Enhancing High-Temperature Energy Storage Performance of PEI-Based Dielectrics by Incorporating ZIF-67 with a Narrow Bandgap

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2023-08-26 DOI:10.1021/acsami.3c06778
Xiaona Li, Hang Luo*, Chenchen Yang, Fan Wang, Xun Jiang, Ru Guo and Dou Zhang*, 
{"title":"Enhancing High-Temperature Energy Storage Performance of PEI-Based Dielectrics by Incorporating ZIF-67 with a Narrow Bandgap","authors":"Xiaona Li,&nbsp;Hang Luo*,&nbsp;Chenchen Yang,&nbsp;Fan Wang,&nbsp;Xun Jiang,&nbsp;Ru Guo and Dou Zhang*,&nbsp;","doi":"10.1021/acsami.3c06778","DOIUrl":null,"url":null,"abstract":"<p >Polymer dielectrics are crucial for use in electrostatic capacitors, owing to their high voltage resistance, high energy storage density, and ultrahigh reliability. Furthermore, high-temperature-resistant polymer dielectrics are applied in various emerging fields. Herein, poly(ether imide) (PEI)-based polymer dielectrics prepared by adding a low loading of dimethylimidazolium cobalt (ZIF-67) with a narrow bandgaps are investigated. The results show that the composites exhibit considerably increased Young’s modulus, suppressed conductivity loss, and improved breakdown strength compared with pure PEI. Consequently, a stable energy storage performance is realized for ZIF-67/PEI composites. Particularly, at 150 °C, 1 wt % ZIF-67/PEI composite affords an excellent energy storage density of 4.59 J/cm<sup>3</sup> with a discharge energy efficiency of 80.6%, exhibiting a considerable increase compared with the values obtained for PEI (2.58 J/cm<sup>3</sup> with a discharge energy efficiency of 68.8%). The results of this study reveal a feasible pathway to design polymer dielectrics with the potential for use in capacitive applications in harsh environments.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 35","pages":"41828–41838"},"PeriodicalIF":8.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c06778","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer dielectrics are crucial for use in electrostatic capacitors, owing to their high voltage resistance, high energy storage density, and ultrahigh reliability. Furthermore, high-temperature-resistant polymer dielectrics are applied in various emerging fields. Herein, poly(ether imide) (PEI)-based polymer dielectrics prepared by adding a low loading of dimethylimidazolium cobalt (ZIF-67) with a narrow bandgaps are investigated. The results show that the composites exhibit considerably increased Young’s modulus, suppressed conductivity loss, and improved breakdown strength compared with pure PEI. Consequently, a stable energy storage performance is realized for ZIF-67/PEI composites. Particularly, at 150 °C, 1 wt % ZIF-67/PEI composite affords an excellent energy storage density of 4.59 J/cm3 with a discharge energy efficiency of 80.6%, exhibiting a considerable increase compared with the values obtained for PEI (2.58 J/cm3 with a discharge energy efficiency of 68.8%). The results of this study reveal a feasible pathway to design polymer dielectrics with the potential for use in capacitive applications in harsh environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
窄带隙ZIF-67增强pei基电介质的高温储能性能
聚合物电介质具有高耐压性、高储能密度和超高可靠性,在静电电容器中具有重要的应用价值。此外,耐高温聚合物电介质在许多新兴领域得到了应用。本文研究了通过添加低负载的二甲基咪唑钴(ZIF-67)制备具有窄带隙的聚醚亚胺(PEI)基聚合物电介质。结果表明,与纯PEI相比,复合材料的杨氏模量明显增加,电导率损失明显降低,击穿强度明显提高。从而实现了ZIF-67/PEI复合材料稳定的储能性能。特别是,在150°C下,1 wt %的ZIF-67/PEI复合材料提供了4.59 J/cm3的优异储能密度,放电能量效率为80.6%,与PEI获得的值(2.58 J/cm3,放电能量效率为68.8%)相比,表现出相当大的提高。这项研究的结果揭示了一种可行的途径来设计具有在恶劣环境中使用电容应用潜力的聚合物电介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Facile Synthesis of Acyl-Hydrazone Composites Based on Hydrazide-Modified Formylated Polystyrene for Effective Removal of Heavy Metal Ions and Sulfides from Water Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer Directly Grown Polyimide Covalent Organic Framework Films with High Electrochromic and Energy-Storage Performance Bacterial Cellulose/Graphene Oxide/Hydroxyapatite Biocomposite: A Scaffold from Sustainable Sources for Bone Tissue Engineering Mechanisms of Phase Evolution in the Cu–Sb–S System Controlled by the Incorporation of Cu in Sb2S3 Thin Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1