Xiaona Li, Hang Luo*, Chenchen Yang, Fan Wang, Xun Jiang, Ru Guo and Dou Zhang*,
{"title":"Enhancing High-Temperature Energy Storage Performance of PEI-Based Dielectrics by Incorporating ZIF-67 with a Narrow Bandgap","authors":"Xiaona Li, Hang Luo*, Chenchen Yang, Fan Wang, Xun Jiang, Ru Guo and Dou Zhang*, ","doi":"10.1021/acsami.3c06778","DOIUrl":null,"url":null,"abstract":"<p >Polymer dielectrics are crucial for use in electrostatic capacitors, owing to their high voltage resistance, high energy storage density, and ultrahigh reliability. Furthermore, high-temperature-resistant polymer dielectrics are applied in various emerging fields. Herein, poly(ether imide) (PEI)-based polymer dielectrics prepared by adding a low loading of dimethylimidazolium cobalt (ZIF-67) with a narrow bandgaps are investigated. The results show that the composites exhibit considerably increased Young’s modulus, suppressed conductivity loss, and improved breakdown strength compared with pure PEI. Consequently, a stable energy storage performance is realized for ZIF-67/PEI composites. Particularly, at 150 °C, 1 wt % ZIF-67/PEI composite affords an excellent energy storage density of 4.59 J/cm<sup>3</sup> with a discharge energy efficiency of 80.6%, exhibiting a considerable increase compared with the values obtained for PEI (2.58 J/cm<sup>3</sup> with a discharge energy efficiency of 68.8%). The results of this study reveal a feasible pathway to design polymer dielectrics with the potential for use in capacitive applications in harsh environments.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 35","pages":"41828–41838"},"PeriodicalIF":8.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c06778","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer dielectrics are crucial for use in electrostatic capacitors, owing to their high voltage resistance, high energy storage density, and ultrahigh reliability. Furthermore, high-temperature-resistant polymer dielectrics are applied in various emerging fields. Herein, poly(ether imide) (PEI)-based polymer dielectrics prepared by adding a low loading of dimethylimidazolium cobalt (ZIF-67) with a narrow bandgaps are investigated. The results show that the composites exhibit considerably increased Young’s modulus, suppressed conductivity loss, and improved breakdown strength compared with pure PEI. Consequently, a stable energy storage performance is realized for ZIF-67/PEI composites. Particularly, at 150 °C, 1 wt % ZIF-67/PEI composite affords an excellent energy storage density of 4.59 J/cm3 with a discharge energy efficiency of 80.6%, exhibiting a considerable increase compared with the values obtained for PEI (2.58 J/cm3 with a discharge energy efficiency of 68.8%). The results of this study reveal a feasible pathway to design polymer dielectrics with the potential for use in capacitive applications in harsh environments.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.