{"title":"Drug-Loaded Konjac Glucomannan/Metal–Organic Framework Composite Hydrogels as Antibacterial and Anti-Inflammatory Cell Scaffolds","authors":"Chuanyi Gu, Chunru Wang, Wenjie Ma, Yunli Gao, Junyao Li, Qing Jin* and Xiaochen Wu*, ","doi":"10.1021/acsami.3c06996","DOIUrl":null,"url":null,"abstract":"<p >Bacterial infections severely threaten human health; therefore, it is important to endow the matrix for tissue engineering with antibacterial efficiency. The loading of antibacterial drugs on nanomaterials provides an efficient strategy to realize synergistic antibacterial efficiency. By depositing various metal–organic frameworks, such as UIO-66, onto konjac glucomannan (KGM), composite hydrogels (KGM/UIO-66) were created. These hydrogels were used as drug carriers, enabling the development of antibacterial hydrogels with high drug loading capacities (e.g., the maximum loading amount of pterostilbene on KGM/UIO-66 reached 0.157 mg/mg) and sustained drug release. The resulting KGM/UIO-66/pterostilbene hydrogel exhibited a three-dimensional porous structure, excellent biocompatibility, antibacterial efficiency, and anti-inflammatory activity. It effectively protected cells from bacterial attacks while ensuring cell adhesion and proliferation, demonstrating great potential as a three-dimensional substrate for biomedical applications, including tissue engineering and regenerative medicine.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 35","pages":"41287–41298"},"PeriodicalIF":8.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c06996","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infections severely threaten human health; therefore, it is important to endow the matrix for tissue engineering with antibacterial efficiency. The loading of antibacterial drugs on nanomaterials provides an efficient strategy to realize synergistic antibacterial efficiency. By depositing various metal–organic frameworks, such as UIO-66, onto konjac glucomannan (KGM), composite hydrogels (KGM/UIO-66) were created. These hydrogels were used as drug carriers, enabling the development of antibacterial hydrogels with high drug loading capacities (e.g., the maximum loading amount of pterostilbene on KGM/UIO-66 reached 0.157 mg/mg) and sustained drug release. The resulting KGM/UIO-66/pterostilbene hydrogel exhibited a three-dimensional porous structure, excellent biocompatibility, antibacterial efficiency, and anti-inflammatory activity. It effectively protected cells from bacterial attacks while ensuring cell adhesion and proliferation, demonstrating great potential as a three-dimensional substrate for biomedical applications, including tissue engineering and regenerative medicine.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.