Franz Rinninger , Tatjana Kaiser , Eberhard Windler , Heiner Greten , Jean-Charles Fruchart , Graciela Castro
{"title":"Selective uptake of cholesteryl esters from high-density lipoprotein-derived LpA-I and LpA-I:A-II particles by hepatic cells in culture","authors":"Franz Rinninger , Tatjana Kaiser , Eberhard Windler , Heiner Greten , Jean-Charles Fruchart , Graciela Castro","doi":"10.1016/S0005-2760(98)00082-4","DOIUrl":null,"url":null,"abstract":"<div><p>Selective uptake of high-density lipoprotein (HDL)-associated cholesteryl esters (CE), i.e. lipid uptake independent of HDL particle uptake, delivers CE to the liver and steroidogenic tissues in vivo and in vitro. From human plasma HDL, two major subpopulations of particles can be isolated: one contains both apolipoprotein (apo) A-I and apo A-II (designated LpA-I:A-II) as dominant protein components, whereas in the other apo A-II is absent (LpA-I). In this study, selective CE uptake from LpA-I and LpA-I:A-II by cultured cells was investigated. LpA-I and LpA-I:A-II were isolated by immunoaffinity chromatography from human plasma high-density lipoprotein3 (HDL<sub>3</sub>, <em>d</em>=1.125–1.21 g/ml) and both particles were radiolabeled in the protein (<sup>125</sup>I) as well as in the CE moiety ([<sup>3</sup>H]cholesteryl oleyl ether ([<sup>3</sup>H]CEt)). Several control experiments validated the labeling methodology applied. To investigate selective CE uptake, human Hep G2 hepatoma cells, human hepatocytes in primary culture and human skin fibroblasts were incubated in medium containing doubly radiolabeled LpA-I or LpA-I:A-II particles. Thereafter cellular tracer content was determined. For each cell type the rate of apparent lipoprotein particle uptake according to the lipid tracer ([<sup>3</sup>H]CEt) was in substantial excess over that due to the protein tracer (<sup>125</sup>I), demonstrating selective CE uptake from LpA-I as well as from LpA-I:A-II. This difference in uptake between [<sup>3</sup>H]CEt and <sup>125</sup>I, i.e. the rate of apparent selective CE uptake, was significantly higher for LpA-I compared to LpA-I:A-II, and this was dose- as well as time-dependent. Thus in human hepatic cells and fibroblasts, CE are selectively taken up to a higher extent from LpA-I compared to LpA-I:A-II. These results may suggest that LpA-I particles of the human plasma HDL fraction may be those lipoproteins which more efficiently deliver CE to the liver via the selective uptake pathway whereas LpA-I:A-II may play a less important role.</p></div>","PeriodicalId":100162,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","volume":"1393 2","pages":"Pages 277-291"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0005-2760(98)00082-4","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005276098000824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Selective uptake of high-density lipoprotein (HDL)-associated cholesteryl esters (CE), i.e. lipid uptake independent of HDL particle uptake, delivers CE to the liver and steroidogenic tissues in vivo and in vitro. From human plasma HDL, two major subpopulations of particles can be isolated: one contains both apolipoprotein (apo) A-I and apo A-II (designated LpA-I:A-II) as dominant protein components, whereas in the other apo A-II is absent (LpA-I). In this study, selective CE uptake from LpA-I and LpA-I:A-II by cultured cells was investigated. LpA-I and LpA-I:A-II were isolated by immunoaffinity chromatography from human plasma high-density lipoprotein3 (HDL3, d=1.125–1.21 g/ml) and both particles were radiolabeled in the protein (125I) as well as in the CE moiety ([3H]cholesteryl oleyl ether ([3H]CEt)). Several control experiments validated the labeling methodology applied. To investigate selective CE uptake, human Hep G2 hepatoma cells, human hepatocytes in primary culture and human skin fibroblasts were incubated in medium containing doubly radiolabeled LpA-I or LpA-I:A-II particles. Thereafter cellular tracer content was determined. For each cell type the rate of apparent lipoprotein particle uptake according to the lipid tracer ([3H]CEt) was in substantial excess over that due to the protein tracer (125I), demonstrating selective CE uptake from LpA-I as well as from LpA-I:A-II. This difference in uptake between [3H]CEt and 125I, i.e. the rate of apparent selective CE uptake, was significantly higher for LpA-I compared to LpA-I:A-II, and this was dose- as well as time-dependent. Thus in human hepatic cells and fibroblasts, CE are selectively taken up to a higher extent from LpA-I compared to LpA-I:A-II. These results may suggest that LpA-I particles of the human plasma HDL fraction may be those lipoproteins which more efficiently deliver CE to the liver via the selective uptake pathway whereas LpA-I:A-II may play a less important role.