Grethe I Andersen Borge , Erik Slinde , Astrid Nilsson
{"title":"Fatty acid α-oxidation of tetradecylthioacetic acid and tetradecylthiopropionic acid in cucumber (Cucumis sativus)","authors":"Grethe I Andersen Borge , Erik Slinde , Astrid Nilsson","doi":"10.1016/S0005-2760(98)00113-1","DOIUrl":null,"url":null,"abstract":"<div><p>Fatty acid α-oxidation in cucumber (<em>Cucumis sativus</em>) involves enzymatic conversion of long-chain C<sub><em>n</em></sub>-fatty acids to the C<sub>(<em>n</em>−1)</sub>-aldehyde and CO<sub>2</sub>. However, the mechanism of this process is not well understood. In this study, the α-oxidation of the fatty acid analogues tetradecylthioacetic acid (TTA) and tetradecylthiopropionic acid (TTP) with a sulphur atom substituting the methylene group in positions 3 and 4, respectively, was investigated and compared to palmitic acid. Both [1-<sup>14</sup>C]TTA and [1-<sup>14</sup>C]TTP could be α-oxidised in the cucumber subcellular 150 000×<em>g</em><sub>max</sub> fraction. [1-<sup>14</sup>C]TTP was an even better substrate compared to the natural palmitic acid, while [1-<sup>14</sup>C]TTA was α-oxidised to a lower extent. [2-<sup>14</sup>C]TTA revealed no <sup>14</sup>CO<sub>2</sub>, indicating that only one cycle of α-oxidation occurred. TTA was an inhibitor of the palmitic acid α-oxidation, and the inhibitory effects were examined.</p></div>","PeriodicalId":100162,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","volume":"1394 2","pages":"Pages 158-168"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0005-2760(98)00113-1","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005276098001131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fatty acid α-oxidation in cucumber (Cucumis sativus) involves enzymatic conversion of long-chain Cn-fatty acids to the C(n−1)-aldehyde and CO2. However, the mechanism of this process is not well understood. In this study, the α-oxidation of the fatty acid analogues tetradecylthioacetic acid (TTA) and tetradecylthiopropionic acid (TTP) with a sulphur atom substituting the methylene group in positions 3 and 4, respectively, was investigated and compared to palmitic acid. Both [1-14C]TTA and [1-14C]TTP could be α-oxidised in the cucumber subcellular 150 000×gmax fraction. [1-14C]TTP was an even better substrate compared to the natural palmitic acid, while [1-14C]TTA was α-oxidised to a lower extent. [2-14C]TTA revealed no 14CO2, indicating that only one cycle of α-oxidation occurred. TTA was an inhibitor of the palmitic acid α-oxidation, and the inhibitory effects were examined.