High added value functionalized carbon quantum dots synthetized from orange peels by assisted microwave solvothermal method and their performance as photosensitizer of mesoporous TiO2 photoelectrodes
Patricia M. Olmos-Moya , Sergio Velazquez-Martinez , Carlos Pineda-Arellano , J. Rene Rangel-Mendez , Luis F. Chazaro-Ruiz
{"title":"High added value functionalized carbon quantum dots synthetized from orange peels by assisted microwave solvothermal method and their performance as photosensitizer of mesoporous TiO2 photoelectrodes","authors":"Patricia M. Olmos-Moya , Sergio Velazquez-Martinez , Carlos Pineda-Arellano , J. Rene Rangel-Mendez , Luis F. Chazaro-Ruiz","doi":"10.1016/j.carbon.2021.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>A direct pathway to convert orange peels waste to useful co-functionalized carbon quantum dots (CQDs) was performed through a friendly and efficient “greener method” consisting of a one-step microwave assisted solvothermal synthesis. The reaction proceeds in a mixture of powder of orange peels as precursor and water. The biomass was characterized by ICP-OES and CHONS analysis together with Fiber's analysis and FT-IR spectroscopy. The prepared CQDs presented a photoluminescent of brightness blue, high aqueous dispersion, chemical stability, an average particle size of 1.16 nm ± 0.1 nm and surface carboxylic and amine groups together with some dopants from the bio-precursor. The Fluorescence study revealed their potential emission in the electromagnetic spectrum of visible light. The bare mesoporous TiO<sub>2</sub> semiconductor was impregnated with CQDs and the resultant composites presented a red-shift in the energy band gap with values from 2.3 eV to 2.08 eV, clearly lower than those on bare semiconductor and depending on the amount of CQDs. The CQDs/TiO<sub>2</sub> photoelectrodes increased their photocurrent when they were exposed to the UV–Vis light, a decrease of photoelectrochemical band gap energy and an increase of the charge transfer constant in contrast with bare TiO<sub>2</sub>. These CQDs/TiO<sub>2</sub> photoanodes were evaluated in carbon quantum dots-sensitized solar cells (CQDSSC) where there was an increase in the performance of the photovoltaic parameters compared with the bare semiconductor.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"187 ","pages":"Pages 216-229"},"PeriodicalIF":10.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622321010721","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 20
Abstract
A direct pathway to convert orange peels waste to useful co-functionalized carbon quantum dots (CQDs) was performed through a friendly and efficient “greener method” consisting of a one-step microwave assisted solvothermal synthesis. The reaction proceeds in a mixture of powder of orange peels as precursor and water. The biomass was characterized by ICP-OES and CHONS analysis together with Fiber's analysis and FT-IR spectroscopy. The prepared CQDs presented a photoluminescent of brightness blue, high aqueous dispersion, chemical stability, an average particle size of 1.16 nm ± 0.1 nm and surface carboxylic and amine groups together with some dopants from the bio-precursor. The Fluorescence study revealed their potential emission in the electromagnetic spectrum of visible light. The bare mesoporous TiO2 semiconductor was impregnated with CQDs and the resultant composites presented a red-shift in the energy band gap with values from 2.3 eV to 2.08 eV, clearly lower than those on bare semiconductor and depending on the amount of CQDs. The CQDs/TiO2 photoelectrodes increased their photocurrent when they were exposed to the UV–Vis light, a decrease of photoelectrochemical band gap energy and an increase of the charge transfer constant in contrast with bare TiO2. These CQDs/TiO2 photoanodes were evaluated in carbon quantum dots-sensitized solar cells (CQDSSC) where there was an increase in the performance of the photovoltaic parameters compared with the bare semiconductor.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.