{"title":"Oxygen adsorption on surfaces studied by a spin- and alignment-controlled O2 beam","authors":"Mitsunori Kurahashi","doi":"10.1016/j.progsurf.2016.03.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Molecular oxygen (O</span><sub>2</sub><span>) is a paramagnetic linear molecule, yet the effect of its molecular alignment and electron spin on the dynamics of O</span><sub>2</sub> adsorption has remained unclear. Recently, it has been however shown that the use of magnetic hexapolar field allows us to prepare a single spin-rotational state [(<span><math><mrow><mi>J</mi><mtext>,</mtext><mi>M</mi></mrow></math></span>)<!--> <!-->=<!--> <!-->(2,<!--> <!-->2)] selected O<sub>2</sub><span> beam for which both the molecular alignment and the spin state of O</span><sub>2</sub> are well defined. State-resolved studies of O<sub>2</sub> sticking on Si(1<!--> <!-->0<!--> <!-->0), Al(1<!--> <!-->1<!--> <!-->1), Ni(1<!--> <!-->1<!--> <!-->1) surfaces conducted with this beam have clarified that the O<sub>2</sub><span> sticking probability depends strongly on the molecular alignment and the spin orientation of O</span><sub>2</sub> relative to the surface. The mechanism of O<sub>2</sub> adsorption on Al(1<!--> <!-->1<!--> <span>1) has been disputed in the past few decades, but the observed steric effect has provided a reasonable picture for it. The preparation method of the state-selected O</span><sub>2</sub> beam and its application to the alignment- and spin-resolved O<sub>2</sub> sticking studies are reviewed.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"91 1","pages":"Pages 29-55"},"PeriodicalIF":8.7000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2016.03.001","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681616000022","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 21
Abstract
Molecular oxygen (O2) is a paramagnetic linear molecule, yet the effect of its molecular alignment and electron spin on the dynamics of O2 adsorption has remained unclear. Recently, it has been however shown that the use of magnetic hexapolar field allows us to prepare a single spin-rotational state [() = (2, 2)] selected O2 beam for which both the molecular alignment and the spin state of O2 are well defined. State-resolved studies of O2 sticking on Si(1 0 0), Al(1 1 1), Ni(1 1 1) surfaces conducted with this beam have clarified that the O2 sticking probability depends strongly on the molecular alignment and the spin orientation of O2 relative to the surface. The mechanism of O2 adsorption on Al(1 1 1) has been disputed in the past few decades, but the observed steric effect has provided a reasonable picture for it. The preparation method of the state-selected O2 beam and its application to the alignment- and spin-resolved O2 sticking studies are reviewed.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.