Ayesha Khan Tareen , Karim Khan , Sarish Rehman , Muhammad Iqbal , Jian Yu , Nasir mahmood , Zewen Zhou , Jinde Yin , Chuan li , Han Zhang
{"title":"Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications","authors":"Ayesha Khan Tareen , Karim Khan , Sarish Rehman , Muhammad Iqbal , Jian Yu , Nasir mahmood , Zewen Zhou , Jinde Yin , Chuan li , Han Zhang","doi":"10.1016/j.progsolidstchem.2021.100336","DOIUrl":null,"url":null,"abstract":"<div><p><span>A monolayer of black phosphorus (BP), commonly known as phosphorene is a novel member of the two-dimensional (2D) materials family. In consequence of its “puckered” lattice structure, phosphorene has a larger surface to volume ratio than graphene and </span>transition metal dichalcogenides (TMDCs), and has revealed some distinct benefits in sensing applications. Since, its first synthesis in 2014 by mechanical exfoliation has spurred a wave of material science research activity. Phosphorene's structure and anisotropic characteristics, with its applications in transistors, batteries, solar cells, disease theranostics and sensing has been the subject of several reviews. This pursuit has sparked a flurry of new areas of research, theoretical and experimental, targeted at technological breakthroughs. The target of this review is to explain current advances in phosphorene synthesis, properties, and sensing applications, such as gas sensing, humidity sensing, photo-detection, bio-sensing, and ion-sensing. Finally, we will discuss the present obstacles and potential for phosphorene synthesis, properties and sensing applications.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678621000297","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 14
Abstract
A monolayer of black phosphorus (BP), commonly known as phosphorene is a novel member of the two-dimensional (2D) materials family. In consequence of its “puckered” lattice structure, phosphorene has a larger surface to volume ratio than graphene and transition metal dichalcogenides (TMDCs), and has revealed some distinct benefits in sensing applications. Since, its first synthesis in 2014 by mechanical exfoliation has spurred a wave of material science research activity. Phosphorene's structure and anisotropic characteristics, with its applications in transistors, batteries, solar cells, disease theranostics and sensing has been the subject of several reviews. This pursuit has sparked a flurry of new areas of research, theoretical and experimental, targeted at technological breakthroughs. The target of this review is to explain current advances in phosphorene synthesis, properties, and sensing applications, such as gas sensing, humidity sensing, photo-detection, bio-sensing, and ion-sensing. Finally, we will discuss the present obstacles and potential for phosphorene synthesis, properties and sensing applications.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.