J E Thigpen, K D Setchell, K B Ahlmark, J Locklear, T Spahr, G F Caviness, M F Goelz, J K Haseman, R R Newbold, D B Forsythe
{"title":"Phytoestrogen content of purified, open- and closed-formula laboratory animal diets.","authors":"J E Thigpen, K D Setchell, K B Ahlmark, J Locklear, T Spahr, G F Caviness, M F Goelz, J K Haseman, R R Newbold, D B Forsythe","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Phytoestrogens exert estrogenic effects on the central nervous system, induce estrus, and stimulate growth of the genital tract of female animals. Over 300 plants and plant products, including some used in laboratory animal diets, contain phytoestrogens. Therefore, the source and concentration of phytoestrogens in rodent diets were determined.</p><p><strong>Methods: </strong>Twelve rodent diets and six major dietary ingredients were assayed for phytoestrogens (daidzein, genistein, formononetin, biochanin A, and coumestrol), using high-performance liquid chromatography. Three rodent diets recently formulated to reduce phytoestrogen content also were assayed.</p><p><strong>Results: </strong>Formononetin, biochanin A, and coumestrol were not detected. Soybean meal was the major source of daidzein and genistein; their concentrations were directly correlated to the percentage of soybean meal in each diet.</p><p><strong>Conclusions: </strong>High, variable concentrations of daidzein and genistein are present in some rodent diets, and dietary phytoestrogens have the potential to alter results of studies of estrogenicity. Careful attention should be given to diet phytoestrogen content, and their concentration should be reported. A standardized, open-formula diet in which estrogenic substances have been reduced to levels that do not alter results of studies that are influenced by exogenous estrogens is recommended.</p>","PeriodicalId":17937,"journal":{"name":"Laboratory animal science","volume":"49 5","pages":"530-6"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory animal science","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Phytoestrogens exert estrogenic effects on the central nervous system, induce estrus, and stimulate growth of the genital tract of female animals. Over 300 plants and plant products, including some used in laboratory animal diets, contain phytoestrogens. Therefore, the source and concentration of phytoestrogens in rodent diets were determined.
Methods: Twelve rodent diets and six major dietary ingredients were assayed for phytoestrogens (daidzein, genistein, formononetin, biochanin A, and coumestrol), using high-performance liquid chromatography. Three rodent diets recently formulated to reduce phytoestrogen content also were assayed.
Results: Formononetin, biochanin A, and coumestrol were not detected. Soybean meal was the major source of daidzein and genistein; their concentrations were directly correlated to the percentage of soybean meal in each diet.
Conclusions: High, variable concentrations of daidzein and genistein are present in some rodent diets, and dietary phytoestrogens have the potential to alter results of studies of estrogenicity. Careful attention should be given to diet phytoestrogen content, and their concentration should be reported. A standardized, open-formula diet in which estrogenic substances have been reduced to levels that do not alter results of studies that are influenced by exogenous estrogens is recommended.