{"title":"Distinct requirements for the AP-3 adaptor complex in pigment granule and synaptic vesicle biogenesis in Drosophila melanogaster.","authors":"C Mullins, L M Hartnell, J S Bonifacino","doi":"10.1007/pl00008688","DOIUrl":null,"url":null,"abstract":"<p><p>The AP-3 adaptor protein complex has been implicated in the biogenesis of lysosome-related organelles, such as pigment granules/melanosomes, and synaptic vesicles. Here we compare the relative importance of AP-3 in the biogenesis of these organelles in Drosophila melanogaster. We report that the Drosophila pigmentation mutants orange and ruby carry genetic lesions in the sigma3 and beta3-adaptin subunits of the AP-3 complex, respectively. Electron microscopy reveals dramatic reductions in the numbers of electron-dense pigment granules in the eyes of these AP-3 mutants. Mutant flies also display greatly reduced levels of pigments housed in these granules. In contrast, electron microscopy of retinula cells reveals numerous synaptic vesicles in both AP-3 mutant and wild-type flies, while behavioral assays show apparently normal locomotor ability of AP-3 mutant larvae. Together, these results demonstrate that Drosophila AP-3 is critical for the biogenesis of pigment granules, but is apparently not essential for formation of a major population of synaptic vesicles in vivo.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"263 6","pages":"1003-14"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/pl00008688","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/pl00008688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61
Abstract
The AP-3 adaptor protein complex has been implicated in the biogenesis of lysosome-related organelles, such as pigment granules/melanosomes, and synaptic vesicles. Here we compare the relative importance of AP-3 in the biogenesis of these organelles in Drosophila melanogaster. We report that the Drosophila pigmentation mutants orange and ruby carry genetic lesions in the sigma3 and beta3-adaptin subunits of the AP-3 complex, respectively. Electron microscopy reveals dramatic reductions in the numbers of electron-dense pigment granules in the eyes of these AP-3 mutants. Mutant flies also display greatly reduced levels of pigments housed in these granules. In contrast, electron microscopy of retinula cells reveals numerous synaptic vesicles in both AP-3 mutant and wild-type flies, while behavioral assays show apparently normal locomotor ability of AP-3 mutant larvae. Together, these results demonstrate that Drosophila AP-3 is critical for the biogenesis of pigment granules, but is apparently not essential for formation of a major population of synaptic vesicles in vivo.