C Augé-Gouillon, H Notareschi-Leroy, P Abad, G Periquet, Y Bigot
{"title":"Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases.","authors":"C Augé-Gouillon, H Notareschi-Leroy, P Abad, G Periquet, Y Bigot","doi":"10.1007/s004380000334","DOIUrl":null,"url":null,"abstract":"<p><p>We have analyzed the sequences of mariner-like element (MLE) transposases, in order to obtain a clearer picture of their phylogenetic relationships. In particular, we have considered their two known structural domains, as well as the nucleic acid sequences of the MLE inverted terminal repeats (ITR). The most consistent tree was obtained using sequences of the catalytic domain of the transposase. The trees obtained with the amino acid sequences of the ITR-binding domain and the ITR sequences themselves were similar to that obtained with the catalytic domain. However, a major difference indicated that the cecropia sub-family is divided into two sub-groups. These new trees were used to examine the evolutionary divergence of mariner-like transposable elements, with particular reference to the possibility that recombination events or gene conversions created mosaic elements during the evolution of transposons.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 4","pages":"506-13"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000334","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
We have analyzed the sequences of mariner-like element (MLE) transposases, in order to obtain a clearer picture of their phylogenetic relationships. In particular, we have considered their two known structural domains, as well as the nucleic acid sequences of the MLE inverted terminal repeats (ITR). The most consistent tree was obtained using sequences of the catalytic domain of the transposase. The trees obtained with the amino acid sequences of the ITR-binding domain and the ITR sequences themselves were similar to that obtained with the catalytic domain. However, a major difference indicated that the cecropia sub-family is divided into two sub-groups. These new trees were used to examine the evolutionary divergence of mariner-like transposable elements, with particular reference to the possibility that recombination events or gene conversions created mosaic elements during the evolution of transposons.