Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae.

H Terashima, N Yabuki, M Arisawa, K Hamada, K Kitada
{"title":"Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae.","authors":"H Terashima,&nbsp;N Yabuki,&nbsp;M Arisawa,&nbsp;K Hamada,&nbsp;K Kitada","doi":"10.1007/s004380000285","DOIUrl":null,"url":null,"abstract":"<p><p>FKS1 and FKS2 encode alternative catalytic subunits of the glucan synthases that are responsible for synthesis of beta-1,3-glucan in the Saccharomyces cerevisiae cell wall. Disruption of FKS1 reduces the glucan content of the cell wall, increases chitin content and activates the expression of CWP1, which encodes a glycosylphosphatidylinositol (GPI)-dependent cell wall protein. These cellular responses have been regarded as compensating for cell wall damage in order to maintain cell wall integrity. Here, we report the identification, by genome-wide screening, of 22 genes that are transcriptionally up-regulated in fks1delta cells. Among them, five genes were found to encode GPI-attached proteins, three of which are covalently associated with the cell wall. Deletion and replacement analysis of the promoter regions identified Rlm1-binding sequences as being responsible for the up-regulation following disruption of FKS1. Using the rlm1delta tetOp-FKS1 strain, in which the expression of FKS1 can be repressed by doxycycline, we examined the requirement for Rlm1 for the transcriptional up-regulation of these five genes. Three of the five genes were not up-regulated by doxycycline, indicating that Rlm1 mediates their up-regulation when FKS1 is inactivated. The remaining two genes were up-regulated by doxycycline, suggesting that a transcription factor other than Rlm1 is involved in their response to disruption of FKS1.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 1-2","pages":"64-74"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000285","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

FKS1 and FKS2 encode alternative catalytic subunits of the glucan synthases that are responsible for synthesis of beta-1,3-glucan in the Saccharomyces cerevisiae cell wall. Disruption of FKS1 reduces the glucan content of the cell wall, increases chitin content and activates the expression of CWP1, which encodes a glycosylphosphatidylinositol (GPI)-dependent cell wall protein. These cellular responses have been regarded as compensating for cell wall damage in order to maintain cell wall integrity. Here, we report the identification, by genome-wide screening, of 22 genes that are transcriptionally up-regulated in fks1delta cells. Among them, five genes were found to encode GPI-attached proteins, three of which are covalently associated with the cell wall. Deletion and replacement analysis of the promoter regions identified Rlm1-binding sequences as being responsible for the up-regulation following disruption of FKS1. Using the rlm1delta tetOp-FKS1 strain, in which the expression of FKS1 can be repressed by doxycycline, we examined the requirement for Rlm1 for the transcriptional up-regulation of these five genes. Three of the five genes were not up-regulated by doxycycline, indicating that Rlm1 mediates their up-regulation when FKS1 is inactivated. The remaining two genes were up-regulated by doxycycline, suggesting that a transcription factor other than Rlm1 is involved in their response to disruption of FKS1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖基磷脂酰肌醇(GPI)附着蛋白编码基因的上调对酿酒酵母FKS1破坏引起的细胞壁损伤的响应
FKS1和FKS2编码葡聚糖合成酶的替代催化亚基,负责在酿酒酵母细胞壁中合成β -1,3-葡聚糖。FKS1的破坏降低了细胞壁的葡聚糖含量,增加了几丁质含量,并激活了CWP1的表达,CWP1编码糖基磷脂酰肌醇(GPI)依赖性细胞壁蛋白。这些细胞反应被认为是对细胞壁损伤的补偿,以保持细胞壁的完整性。在这里,我们报告了鉴定,通过全基因组筛选,22个基因在fks1delta细胞中转录上调。其中,发现5个基因编码gpi附着蛋白,其中3个与细胞壁共价相关。对启动子区域的缺失和替换分析发现,rlm1结合序列是FKS1断裂后上调的原因。利用强力霉素可以抑制FKS1表达的rlm1delta tetOp-FKS1菌株,我们检测了Rlm1对这五个基因转录上调的要求。这5个基因中有3个未被强力霉素上调,表明当FKS1失活时,Rlm1介导了它们的上调。其余两个基因被强力霉素上调,这表明除了Rlm1外,还有一个转录因子参与了它们对FKS1破坏的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simultaneous reduction of the activity of two related enzymes, involved in early steps of the polyamine biosynthetic pathway, by a single antisense cDNA in transgenic rice. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Identification of the initiation codon for the atpB gene in Chlamydomonas chloroplasts excludes translation of a precursor form of the beta subunit of the ATP synthase. A novel member of the Swi6p family of fission yeast chromo domain-containing proteins associates with the centromere in vivo and affects chromosome segregation. Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1