{"title":"The Prr1 response regulator is essential for transcription of ste11+ and for sexual development in fission yeast.","authors":"R Ohmiya, H Yamada, C Kato, H Aiba, T Mizuno","doi":"10.1007/s004380000305","DOIUrl":null,"url":null,"abstract":"<p><p>Schizosaccharomyces pombe expresses a putative transcription factor, named Prr1, which is intriguing in the sense that it contains a bacterial type of phospho-accepting receiver domain, preceded by a mammalian heat shock factor (HSF2)-like DNA-binding domain. The receiver domain is most probably involved in an as yet unidentified histidine-to-aspartate (His-to-Asp) phosphorelay pathway in S. pombe. In this study, the structure, function, and cellular localization of Prr1 were assessed in the context of oxidative stress and His-to-Asp phosphorelay. As the most intriguing result of this study, we found that Prr1 is essential not only for the expression of genes induced by oxidative stress (e.g., ctt1+ and trr1+), but also for the expression of ste11+, which in turn is responsible for the expression of a variety of genes required for sexual development. Accordingly, Prr1-deficient cells are not only hypersensitive to oxidative stress, but also severely defective in conjugation and/or spore formation. These results suggested that the transcription factor Prr1 plays a pivotal role in an as yet unknown signal transduction pathway that is implicated in sexual differentiation. These findings are discussed with special reference to the well-characterized transcription factors Pap1 and Atf1 of S. pombe.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 4","pages":"441-51"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000305","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
Schizosaccharomyces pombe expresses a putative transcription factor, named Prr1, which is intriguing in the sense that it contains a bacterial type of phospho-accepting receiver domain, preceded by a mammalian heat shock factor (HSF2)-like DNA-binding domain. The receiver domain is most probably involved in an as yet unidentified histidine-to-aspartate (His-to-Asp) phosphorelay pathway in S. pombe. In this study, the structure, function, and cellular localization of Prr1 were assessed in the context of oxidative stress and His-to-Asp phosphorelay. As the most intriguing result of this study, we found that Prr1 is essential not only for the expression of genes induced by oxidative stress (e.g., ctt1+ and trr1+), but also for the expression of ste11+, which in turn is responsible for the expression of a variety of genes required for sexual development. Accordingly, Prr1-deficient cells are not only hypersensitive to oxidative stress, but also severely defective in conjugation and/or spore formation. These results suggested that the transcription factor Prr1 plays a pivotal role in an as yet unknown signal transduction pathway that is implicated in sexual differentiation. These findings are discussed with special reference to the well-characterized transcription factors Pap1 and Atf1 of S. pombe.