{"title":"Evaluation of eicosanoids and NSAIDs as PPARgamma ligands in colorectal carcinoma cells.","authors":"J B Nixon, H Kamitani, S J Baek, T E Eling","doi":"10.1016/s0952-3278(03)00023-1","DOIUrl":null,"url":null,"abstract":"<p><p>The activation of peroxisome proliferator activated receptor gamma (PPARgamma) may play a role in the control of colorectal carcinogenesis. The expression of PPARgamma was examined by Western blotting in human colorectal tumors and matched normal adjacent tissues, as well as in various colorectal carcinoma cell lines. In the tissues, the expression of PPARgamma was elevated in tumors relative to the adjacent normal tissues. Each colorectal carcinoma cell line expressed PPARgamma. The ability of various eicosanoids to bind PPARgamma in colorectal carcinoma cells was investigated using luciferase reporter assays. The well-known PPARgamma ligands, troglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2) strongly induced PPARgamma binding activity. Products of lipoxygenases displayed moderate binding activity, while other prostaglandins and fatty acids displayed little or no reporter activation. The activation of PPARgamma by 13(S)-HODE, the major metabolite of 15-lipoxygenase-1 from linoleic acid, was concentration dependent reaching maximum at 10 micro M (35-fold activation). The endogenous production of 13(S)-HODE by expression of 15-LO-1 did not activate PPARgamma. The ability of various nonsteroidal anti-inflammatory drugs (NSAIDs) to induce PPARgamma activation was also evaluated. The conventional NSAIDs that inhibit both cyclooxygenases (COX-1 and COX-2) also induced PPARgamma binding activity. In general, however, neither COX-1- nor COX-2-specific inhibitors induced the activation of PPARgamma. Taken together, the metabolites of 15-lipoxygenase and the conventional NSAIDs were confirmed as exogenous ligands for PPARgamma in colorectal carcinoma cells.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/s0952-3278(03)00023-1","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/s0952-3278(03)00023-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 36
Abstract
The activation of peroxisome proliferator activated receptor gamma (PPARgamma) may play a role in the control of colorectal carcinogenesis. The expression of PPARgamma was examined by Western blotting in human colorectal tumors and matched normal adjacent tissues, as well as in various colorectal carcinoma cell lines. In the tissues, the expression of PPARgamma was elevated in tumors relative to the adjacent normal tissues. Each colorectal carcinoma cell line expressed PPARgamma. The ability of various eicosanoids to bind PPARgamma in colorectal carcinoma cells was investigated using luciferase reporter assays. The well-known PPARgamma ligands, troglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2) strongly induced PPARgamma binding activity. Products of lipoxygenases displayed moderate binding activity, while other prostaglandins and fatty acids displayed little or no reporter activation. The activation of PPARgamma by 13(S)-HODE, the major metabolite of 15-lipoxygenase-1 from linoleic acid, was concentration dependent reaching maximum at 10 micro M (35-fold activation). The endogenous production of 13(S)-HODE by expression of 15-LO-1 did not activate PPARgamma. The ability of various nonsteroidal anti-inflammatory drugs (NSAIDs) to induce PPARgamma activation was also evaluated. The conventional NSAIDs that inhibit both cyclooxygenases (COX-1 and COX-2) also induced PPARgamma binding activity. In general, however, neither COX-1- nor COX-2-specific inhibitors induced the activation of PPARgamma. Taken together, the metabolites of 15-lipoxygenase and the conventional NSAIDs were confirmed as exogenous ligands for PPARgamma in colorectal carcinoma cells.
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.