I Hirao, T Fujiwara, M Kimoto, T Mitsui, T Okuni, T Ohtsuki, S Yokoyama
{"title":"Unnatural base pairs between 2-amino-6-(2-thienyl)purine and the complementary bases.","authors":"I Hirao, T Fujiwara, M Kimoto, T Mitsui, T Okuni, T Ohtsuki, S Yokoyama","doi":"10.1093/nass/44.1.261","DOIUrl":null,"url":null,"abstract":"<p><p>The unnatural base, 2-amino-6-(2-thienyl)purine (designated as s), instead of 2-amino-6-(N,N-dimethylamino)purine (designated as x), was designed in order to improve the specificity and efficiency of the base pairing with pyridin-2-one (designated as y). DNA fragments containing s were chemically synthesized, and the thermal stability and the enzymatic reactions involving the s-y pairing were examined. Thermal denaturation experiments showed that the DNA duplex (12-mer) containing the s-y pair was more stable than that containing the x-y pair. The incorporation of dyTP was also more advantageous to the s-y pairing than the x-y pairing in single-nucleotide insertion experiments using the Klenow fragment of Escherichia coli DNA polymerase I.</p>","PeriodicalId":19394,"journal":{"name":"Nucleic acids symposium series","volume":" 44","pages":"261-2"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/nass/44.1.261","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acids symposium series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nass/44.1.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The unnatural base, 2-amino-6-(2-thienyl)purine (designated as s), instead of 2-amino-6-(N,N-dimethylamino)purine (designated as x), was designed in order to improve the specificity and efficiency of the base pairing with pyridin-2-one (designated as y). DNA fragments containing s were chemically synthesized, and the thermal stability and the enzymatic reactions involving the s-y pairing were examined. Thermal denaturation experiments showed that the DNA duplex (12-mer) containing the s-y pair was more stable than that containing the x-y pair. The incorporation of dyTP was also more advantageous to the s-y pairing than the x-y pairing in single-nucleotide insertion experiments using the Klenow fragment of Escherichia coli DNA polymerase I.