Mitochondrial-targeted drug and DNA delivery.

IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY Critical Reviews in Therapeutic Drug Carrier Systems Pub Date : 2003-01-01 DOI:10.1615/critrevtherdrugcarriersyst.v20.i1.10
Volkmar Weissig
{"title":"Mitochondrial-targeted drug and DNA delivery.","authors":"Volkmar Weissig","doi":"10.1615/critrevtherdrugcarriersyst.v20.i1.10","DOIUrl":null,"url":null,"abstract":"<p><p>The field of mitochondrial research is currently among the fastest growing disciplines in biomedicine. Approximately 12,000 articles on mitochondria have been published since the beginning of the new millennium. What brings mitochondria into the limelight of the scientific community? Since the end of the 1980s, a series of key discoveries has been made that have rekindled the scientific interest in this long-known cell organelle. It has become increasingly evident that mitochondrial dysfunction contributes to a variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Moreover, since the middle of the 1990s, mitochondria, the \"power houses\" of the cell, have also become accepted as the cells' \"arsenal,\" reflecting their increasingly acknowledged key role during apoptosis. Based on these recent developments in mitochondrial research, increased pharmacological and pharmaceutical efforts have lead to the emergence of mitochondrial medicine\" as a new field of biomedical research. Targeting of biologically active molecules to mitochondria in living cells will open avenues for manipulating mitochondrial functions, which may result in the selective protection, repair, or eradication of cells. This review gives a comprehensive overview of current strategies of mitochondrial targeting and their possible therapeutic applications.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/critrevtherdrugcarriersyst.v20.i1.10","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 52

Abstract

The field of mitochondrial research is currently among the fastest growing disciplines in biomedicine. Approximately 12,000 articles on mitochondria have been published since the beginning of the new millennium. What brings mitochondria into the limelight of the scientific community? Since the end of the 1980s, a series of key discoveries has been made that have rekindled the scientific interest in this long-known cell organelle. It has become increasingly evident that mitochondrial dysfunction contributes to a variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Moreover, since the middle of the 1990s, mitochondria, the "power houses" of the cell, have also become accepted as the cells' "arsenal," reflecting their increasingly acknowledged key role during apoptosis. Based on these recent developments in mitochondrial research, increased pharmacological and pharmaceutical efforts have lead to the emergence of mitochondrial medicine" as a new field of biomedical research. Targeting of biologically active molecules to mitochondria in living cells will open avenues for manipulating mitochondrial functions, which may result in the selective protection, repair, or eradication of cells. This review gives a comprehensive overview of current strategies of mitochondrial targeting and their possible therapeutic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线粒体靶向药物和DNA递送。
线粒体研究领域是目前生物医学中发展最快的学科之一。自新千年开始以来,已经发表了大约12,000篇关于线粒体的文章。是什么让线粒体成为科学界关注的焦点?自20世纪80年代末以来,一系列重要的发现重新点燃了人们对这种久负盛名的细胞器的科学兴趣。越来越明显的是,线粒体功能障碍与多种人类疾病有关,从神经退行性和神经肌肉疾病、肥胖、糖尿病到缺血再灌注损伤和癌症。此外,自20世纪90年代中期以来,线粒体,细胞的“动力屋”,也被认为是细胞的“武器库”,反映出它们在细胞凋亡过程中日益被承认的关键作用。基于线粒体研究的这些最新进展,增加的药理学和药学努力已经导致线粒体医学作为生物医学研究的一个新领域的出现。靶向活细胞线粒体的生物活性分子将为操纵线粒体功能开辟道路,这可能导致细胞的选择性保护、修复或根除。本文综述了目前线粒体靶向治疗的策略及其可能的治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
18.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields. Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.
期刊最新文献
Enhancing Microemulsion based Therapeutic Drug Delivery: Exploring Surfactants, Co-surfactants, and Quality by Design Strategies within Pseudo-ternary Phase Diagrams NOVEL DRUG DELIVERY TOOLS FOR BETTER PERMEATION AND SKIN CANCER TREATMENT Nanobiocatalysts and Nanozymes: Enzyme-Inspired Nanomaterials for Industrial and Biomedical Applications Navigating the Challenges of 3D Printing Personalized Medicine in Space Explorations: A Comprehensive Review From Conventional to Novel Drug Delivery Systems for Meloxicam: A Systematic Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1