Pharmaceutical development of cancer therapeutics is a dynamic area of research. Even after decades of intensive work, cancer continues to be a dreadful disease with an ever-increasing global incidence. The progress of nanotechnology in cancer research has overcome inherent limitations in conventional cancer chemotherapy and fulfilled the need for target-specific drug carriers. Nanotechnology uses the altered patho-physiological microenvironment of malignant cells and offers various advantages like improved solubility, reduced toxicity, prolonged drug circulation with controlled release, circumventing multidrug resistance, and enhanced biodistribution. Early cancer detection has a crucial role in selecting the best drug regime, thus, diagnosis and therapeutics go hand in hand. Furthermore, nanobots are an amazing possibility and promising innovation with numerous significant applications, particularly in fighting cancer and cleaning out blood vessels. Nanobots are tiny robots, ranging in size from 1 to 100 nm. Moreover, the nanobots would work similarly to white blood cells, watching the bloodstream and searching for indications of distress. This review articulates the evolution of various organic and inorganic nanoparticles and nanobots used as therapeutics, along with their pros and cons. It also highlights the shift in diagnostics from conventional methods to more advanced techniques. This rapidly growing domain is providing more space for engineering desired nanoparticles that can show miraculous results in therapeutic and diagnostic trials.
Cosmeceuticals have gained great importance and are among the top-selling products used for skin care. Because of changing lifestyles, climate, and increasing pollution, cosmeceuticals are utilized by every individual, thereby making cosmeceuticals a fruitful field for research and the economy. Cosmeceuticals provide incredibly pleasing aesthetic results by fusing the qualities of both cosmetics and medicinal substances. Cosmeceuticals are primarily utilized to improve the appearance of skin by making it smoother, moisturized, and wrinkle-free, in addition to treating dermatological conditions, including photoaging, burns, dandruff, acne, eczema, and erythema. Nanocosmeceuticals are cosmetic products that combine therapeutic effects utilizing nanotechnology, allowing for more precise and effective target-specific delivery of active ingredients, and improving bioavailability.
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.