A stable chemiluminophore, adamantylideneadamantane 1,2-dioxetane: from fundamental properties to utilities in mechanochemistry and soft crystal science
{"title":"A stable chemiluminophore, adamantylideneadamantane 1,2-dioxetane: from fundamental properties to utilities in mechanochemistry and soft crystal science","authors":"Takashi Hirano, Chihiro Matsuhashi","doi":"10.1016/j.jphotochemrev.2022.100483","DOIUrl":null,"url":null,"abstract":"<div><p>Chemiluminescence (CL) is a luminescence phenomenon originated by a “chemical reaction.” CL provides a basis for real-time imaging technology in materials science. In fact, a CL reaction is easily triggered in general and makes it possible to track its progress in a target material by highly sensitive photon detection. Recently, real-time CL imagings became breakthrough techniques for analyzing the molecular mechanisms of failures of polymeric materials and of reactions and phase transitions in soft crystals. In the CL imaging techniques, adamantylideneadamantane 1,2-dioxetane (Adox) has been adopted as a stable core structure of chemiluminophores. That is, Adox is an essential seed compound to design a chemiluminophore with a desired molecular function. To support developments of real-time CL imaging techniques, we review the chemistry of Adox as a representative stable chemiluminophore including scientific history and utilities of Adox and its derivatives.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"51 ","pages":"Article 100483"},"PeriodicalIF":12.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556722000028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Chemiluminescence (CL) is a luminescence phenomenon originated by a “chemical reaction.” CL provides a basis for real-time imaging technology in materials science. In fact, a CL reaction is easily triggered in general and makes it possible to track its progress in a target material by highly sensitive photon detection. Recently, real-time CL imagings became breakthrough techniques for analyzing the molecular mechanisms of failures of polymeric materials and of reactions and phase transitions in soft crystals. In the CL imaging techniques, adamantylideneadamantane 1,2-dioxetane (Adox) has been adopted as a stable core structure of chemiluminophores. That is, Adox is an essential seed compound to design a chemiluminophore with a desired molecular function. To support developments of real-time CL imaging techniques, we review the chemistry of Adox as a representative stable chemiluminophore including scientific history and utilities of Adox and its derivatives.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.