Sunil SeethaLekshmi , Tejender S. Thakur , Sunil Varughese
{"title":"Photoinstability in active pharmaceutical ingredients: Crystal engineering as a mitigating measure","authors":"Sunil SeethaLekshmi , Tejender S. Thakur , Sunil Varughese","doi":"10.1016/j.jphotochemrev.2021.100455","DOIUrl":null,"url":null,"abstract":"<div><p>Cocrystallization has evolved as an attractive prospect to broaden the chemical landscape of a drug entity, expand its therapeutic scope, and address physicochemical deficiencies of an active pharmaceutical ingredient (API). The non-covalent approaches to address the solubility and bioavailability of BCS Class-II and Class-IV drugs is an archetypal example and is a prolific topic. The present review highlights various supramolecular methods employed in addressing the photoinstability in drugs, emphasizing crystal engineering approaches. Because a greater proportion of the drugs are formulated in the solid-state, the structural factors—crystal packing, intermolecular interactions, packing density—remain a critical determinant in the observed extent of stability. Comprehending and amending these structural determinants using crystal engineering concepts proposes to address the photoinstability in drugs. Also, we highlight the pros and cons of the different adopted strategies in terms of formulation and the underlying challenges and put in prospect. The review provides a correlative assessment of the structure-property relations that could further augment the foundations of factual knowledge in drug stability.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"49 ","pages":"Article 100455"},"PeriodicalIF":12.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138955672100054X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Cocrystallization has evolved as an attractive prospect to broaden the chemical landscape of a drug entity, expand its therapeutic scope, and address physicochemical deficiencies of an active pharmaceutical ingredient (API). The non-covalent approaches to address the solubility and bioavailability of BCS Class-II and Class-IV drugs is an archetypal example and is a prolific topic. The present review highlights various supramolecular methods employed in addressing the photoinstability in drugs, emphasizing crystal engineering approaches. Because a greater proportion of the drugs are formulated in the solid-state, the structural factors—crystal packing, intermolecular interactions, packing density—remain a critical determinant in the observed extent of stability. Comprehending and amending these structural determinants using crystal engineering concepts proposes to address the photoinstability in drugs. Also, we highlight the pros and cons of the different adopted strategies in terms of formulation and the underlying challenges and put in prospect. The review provides a correlative assessment of the structure-property relations that could further augment the foundations of factual knowledge in drug stability.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.