A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2021-03-15 DOI:10.1016/j.watres.2021.116831
Hatice Yesil, Baris Calli, Adile Evren Tugtas
{"title":"A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes","authors":"Hatice Yesil,&nbsp;Baris Calli,&nbsp;Adile Evren Tugtas","doi":"10.1016/j.watres.2021.116831","DOIUrl":null,"url":null,"abstract":"<div><p>Anaerobic dry-fermentation of food wastes can be utilized for the production of volatile fatty acids (VFA). However, especially for high load fermentation systems, accumulation of VFAs may result in inhibition of fermentation process. In this study, separation of VFAs from synthetic mixtures via a vapor permeation membrane contactor (VPMC) system with an air-filled polytetrafluoroethylene (PTFE) membrane was assessed at various temperatures and permeate solution concentrations. In addition, a pioneering integrated leach-bed fermentation and membrane separation system was operated with undefined mixed culture for the purpose of enhanced VFA production along with its recovery. Hybrid system resulted in 42% enhancement in total VFA production and 60% of total VFAs were recovered through the VPMC system. The results of this study revealed that integrated system can be exploited as a means of increasing organic loading to fermentation systems and increasing the value of VFA production.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.watres.2021.116831","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135421000294","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 16

Abstract

Anaerobic dry-fermentation of food wastes can be utilized for the production of volatile fatty acids (VFA). However, especially for high load fermentation systems, accumulation of VFAs may result in inhibition of fermentation process. In this study, separation of VFAs from synthetic mixtures via a vapor permeation membrane contactor (VPMC) system with an air-filled polytetrafluoroethylene (PTFE) membrane was assessed at various temperatures and permeate solution concentrations. In addition, a pioneering integrated leach-bed fermentation and membrane separation system was operated with undefined mixed culture for the purpose of enhanced VFA production along with its recovery. Hybrid system resulted in 42% enhancement in total VFA production and 60% of total VFAs were recovered through the VPMC system. The results of this study revealed that integrated system can be exploited as a means of increasing organic loading to fermentation systems and increasing the value of VFA production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干法发酵与膜接触器混合系统:提高有机固体废物挥发性脂肪酸(VFA)的生产和回收
食物垃圾的厌氧干发酵可用于生产挥发性脂肪酸(VFA)。然而,特别是对于高负荷发酵系统,VFAs的积累可能导致发酵过程的抑制。在本研究中,通过充气聚四氟乙烯(PTFE)膜的蒸汽渗透膜接触器(VPMC)系统在不同温度和渗透溶液浓度下对VFAs从合成混合物中分离进行了评估。此外,为了提高VFA的产量和回收率,采用了一种开创性的综合浸出床发酵和膜分离系统。混合系统使总VFA产量提高42%,总VFA的60%通过VPMC系统回收。本研究结果表明,集成系统可以作为一种增加发酵系统有机负荷和提高VFA生产价值的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Selective oxidation of nitrogenous heterocyclic compounds by heat/peroxymonosulfate in phenol-rich wastewater Propionic Acid Enhances H2 Production in Purple Phototrophic Bacteria: Insights into Carbon and Reducing Equivalent Allocation Small-data-trained model for predicting nitrate accumulation in one-stage partial nitritation-anammox processes controlled by oxygen supply rate Combining stable isotopes and spatial stream network modelling to disentangle the roles of hydrological and biogeochemical processes on riverine nitrogen dynamics Changes in microbial communities across the whole A2/O wastewater treatment process and their drivers - Reduced community diversity but increased proportion of certain pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1