Molecule in soft-crystal at ground and excited states: Theoretical approach

Jia-Jia Zheng , Shigeyoshi Sakaki
{"title":"Molecule in soft-crystal at ground and excited states: Theoretical approach","authors":"Jia-Jia Zheng ,&nbsp;Shigeyoshi Sakaki","doi":"10.1016/j.jphotochemrev.2022.100482","DOIUrl":null,"url":null,"abstract":"<div><p>This account discusses first two computational methods which can be applied to electronic structure calculations of soft-crystals; one is a method composed of the periodic-density functional theory (DFT) for an infinite crystal and the post-Hartree-Fock method for a cluster model, named here cluster-model/periodic-model combined method (abbreviated as CM/PM-Combined method). The other is a quantum mechanics/periodic-molecular mechanics (named QM/Periodic-MM) method, in which a target molecule is calculated by the DFT or the post-Hartree-Fock method and the other moiety is calculated by the MM method under the periodic boundary condition. Then, the performance of these two methods is discussed. The CM/PM-Combined method exhibited good performance for investigating the gas adsorption into MOF and the QM/Periodic-MM succeeded in reproducing geometry of single crystal of platinum(II) complexes. The QM/periodic-MM method has been applied to theoretical studies of the excited state and the emission spectrum in soft-crystals: In a theoretical study of a gold(I) phenyl phenylisocyanide complex, the geometries of a triplet ligand-to-ligand charger transfer (<sup>3</sup>LLCT) and a triplet metal-metal to ligand charge-transfer (<sup>3</sup>MMLCT) excited states were optimized in the crystal and the dependences of absorption and emission energies on crystal phase were discussed. In a theoretical study of a platinum(II) dicyano bipyridine complex, the geometries of several delocalized <sup>3</sup>MMLCT excited states, emission spectra, and their temperature dependences were investigated in the crystal. In both gold(I) and platinum(II) complexes, the characteristic features of the excited state and the emission spectra were elucidated by the theoretical calculations. Although the CM/PM-Combined method has not been applied to photochemistry issue, brief discussion is presented for its possibility for the application.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":null,"pages":null},"PeriodicalIF":12.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556722000016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This account discusses first two computational methods which can be applied to electronic structure calculations of soft-crystals; one is a method composed of the periodic-density functional theory (DFT) for an infinite crystal and the post-Hartree-Fock method for a cluster model, named here cluster-model/periodic-model combined method (abbreviated as CM/PM-Combined method). The other is a quantum mechanics/periodic-molecular mechanics (named QM/Periodic-MM) method, in which a target molecule is calculated by the DFT or the post-Hartree-Fock method and the other moiety is calculated by the MM method under the periodic boundary condition. Then, the performance of these two methods is discussed. The CM/PM-Combined method exhibited good performance for investigating the gas adsorption into MOF and the QM/Periodic-MM succeeded in reproducing geometry of single crystal of platinum(II) complexes. The QM/periodic-MM method has been applied to theoretical studies of the excited state and the emission spectrum in soft-crystals: In a theoretical study of a gold(I) phenyl phenylisocyanide complex, the geometries of a triplet ligand-to-ligand charger transfer (3LLCT) and a triplet metal-metal to ligand charge-transfer (3MMLCT) excited states were optimized in the crystal and the dependences of absorption and emission energies on crystal phase were discussed. In a theoretical study of a platinum(II) dicyano bipyridine complex, the geometries of several delocalized 3MMLCT excited states, emission spectra, and their temperature dependences were investigated in the crystal. In both gold(I) and platinum(II) complexes, the characteristic features of the excited state and the emission spectra were elucidated by the theoretical calculations. Although the CM/PM-Combined method has not been applied to photochemistry issue, brief discussion is presented for its possibility for the application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处于基态和激发态的软晶体分子:理论方法
本文讨论了可用于软晶体电子结构计算的前两种计算方法;一种是由无限晶体的周期密度泛函理论(DFT)和簇模型的post-Hartree-Fock方法组成的方法,这里称为簇模型/周期模型组合方法(简称CM/ pm组合方法)。另一种是量子力学/周期分子力学(QM/ periodic- MM)方法,在周期边界条件下,用DFT或post-Hartree-Fock方法计算一个目标分子,用MM方法计算另一个目标分子。然后,讨论了这两种方法的性能。CM/ pm组合方法在研究MOF气体吸附方面表现出良好的性能,QM/Periodic-MM成功地再现了铂(II)配合物的单晶几何形状。QM/ periodical - mm方法已应用于软晶体中激发态和发射光谱的理论研究:在一种金(I)苯基苯基异氰化物配合物的理论研究中,优化了晶体中三态配体到配体的电荷转移(3LLCT)和三态金属-金属到配体的电荷转移(3MMLCT)激发态的几何形状,并讨论了吸收和发射能量对晶体相的依赖关系。在铂(II)二氨基联吡啶配合物的理论研究中,研究了晶体中几个离域3MMLCT激发态的几何形状、发射光谱及其温度依赖性。在金(I)和铂(II)配合物中,通过理论计算阐明了激发态和发射光谱的特征。虽然CM/ pm组合方法尚未应用于光化学问题,但对其应用的可能性进行了简要的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
期刊最新文献
Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors Editorial Board Towards red-NIR emission of platinum(II) complexes Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1