Camila Campos-Escamilla , Luis A. Gonzalez-Rámirez , Fermín Otálora , José Antonio Gavira , Abel Moreno
{"title":"A short overview on practical techniques for protein crystallization and a new approach using low intensity electromagnetic fields","authors":"Camila Campos-Escamilla , Luis A. Gonzalez-Rámirez , Fermín Otálora , José Antonio Gavira , Abel Moreno","doi":"10.1016/j.pcrysgrow.2022.100559","DOIUrl":null,"url":null,"abstract":"<div><p>This contribution deals with a practical overview of some popular and sophisticated crystallization methods that help increase the success rate of a crystallization project and introduces a newly developed method involving low intensity electromagnetic fields<span>. Aiming to suggest a methodology to follow, the present contribution is divided into two main parts in a logical order to get the best crystals for high resolution X-ray crystallographic analysis. The first part starts with a short review of the chemical and physical fundamentals of each crystallization method through different strategies based on physicochemical approaches. Then, practical non-conventional techniques for protein crystallization are presented, not only for growing protein crystals, but also for controlling the size and number of crystals. These include crystal growth in gels, counter-diffusion, seeding, and macromolecular imprinted polymers (MIPs). The second part shows the effects of coupling low intensity electric fields (in the scale of units of μAmperes) with weak magnetic fields (in the scale of milli Tesla) applied to protein crystallization. This approach consists of a novel experimental set up, which was used to study the influence of the coupled fields on the crystallization of lysozyme<span> in solution and in gel media. This new approach is based on the classical theories of transport phenomena and offers a more accessible strategy to obtain suitable crystals for X-ray characterization or Neutron diffraction investigations.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 1","pages":"Article 100559"},"PeriodicalIF":4.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096089742200002X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 3
Abstract
This contribution deals with a practical overview of some popular and sophisticated crystallization methods that help increase the success rate of a crystallization project and introduces a newly developed method involving low intensity electromagnetic fields. Aiming to suggest a methodology to follow, the present contribution is divided into two main parts in a logical order to get the best crystals for high resolution X-ray crystallographic analysis. The first part starts with a short review of the chemical and physical fundamentals of each crystallization method through different strategies based on physicochemical approaches. Then, practical non-conventional techniques for protein crystallization are presented, not only for growing protein crystals, but also for controlling the size and number of crystals. These include crystal growth in gels, counter-diffusion, seeding, and macromolecular imprinted polymers (MIPs). The second part shows the effects of coupling low intensity electric fields (in the scale of units of μAmperes) with weak magnetic fields (in the scale of milli Tesla) applied to protein crystallization. This approach consists of a novel experimental set up, which was used to study the influence of the coupled fields on the crystallization of lysozyme in solution and in gel media. This new approach is based on the classical theories of transport phenomena and offers a more accessible strategy to obtain suitable crystals for X-ray characterization or Neutron diffraction investigations.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.