Nitrogen-doped carbon-encompassed Ni nanoparticles prepared from Ni (II) cation-exchanged metal organic framework for efficient electrochemical CO2 reduction

IF 4.5 3区 化学 Q1 Chemical Engineering Journal of Electroanalytical Chemistry Pub Date : 2023-08-06 DOI:10.1016/j.jelechem.2023.117704
Feng Chen , Li-Li Zhang , Ke-An Wang, Guan-Rong Zhu, Hai-Bin Zhu
{"title":"Nitrogen-doped carbon-encompassed Ni nanoparticles prepared from Ni (II) cation-exchanged metal organic framework for efficient electrochemical CO2 reduction","authors":"Feng Chen ,&nbsp;Li-Li Zhang ,&nbsp;Ke-An Wang,&nbsp;Guan-Rong Zhu,&nbsp;Hai-Bin Zhu","doi":"10.1016/j.jelechem.2023.117704","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon layer-encompassed nickel nanoparticles of core–shell structure (designated as Ni NPs@NC) show notable advantages toward electrochemical carbon dioxide reduction reaction (CO<sub>2</sub>RR). Core-shell structured Ni NPs@NC nanoparticles anchored on the carbon matrix have been conveniently built from a cationic metal–organic framework (CPM-72 herein) which incorporates the Ni<sup>2+</sup> cations through the cation exchange before high-temperature pyrolysis. The designed Ni NPs@NC catalyst exhibited impressive CO<sub>2</sub>RR performance which could efficiently convert CO<sub>2</sub> into CO (carbon monoxide). In the H-type cell, a maximal CO faradaic efficiency (FE) of 86.4% was achieved at −0.8 V (vs. RHE) with a high CO partial current density (<em>j</em><sub>co</sub>) of −11.0 mA cm<sup>−2</sup>. In the flow cell device, the CO FE was further improved to 98.6% with the enhanced <em>j</em><sub>co</sub> of −38.7 mA cm<sup>−2</sup>. Finally, Zn-CO<sub>2</sub> battery test also delivered a peak power density of 0.39 mW cm<sup>−2</sup> at 2.65 mA cm<sup>−2</sup>.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"946 ","pages":"Article 117704"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005647","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon layer-encompassed nickel nanoparticles of core–shell structure (designated as Ni NPs@NC) show notable advantages toward electrochemical carbon dioxide reduction reaction (CO2RR). Core-shell structured Ni NPs@NC nanoparticles anchored on the carbon matrix have been conveniently built from a cationic metal–organic framework (CPM-72 herein) which incorporates the Ni2+ cations through the cation exchange before high-temperature pyrolysis. The designed Ni NPs@NC catalyst exhibited impressive CO2RR performance which could efficiently convert CO2 into CO (carbon monoxide). In the H-type cell, a maximal CO faradaic efficiency (FE) of 86.4% was achieved at −0.8 V (vs. RHE) with a high CO partial current density (jco) of −11.0 mA cm−2. In the flow cell device, the CO FE was further improved to 98.6% with the enhanced jco of −38.7 mA cm−2. Finally, Zn-CO2 battery test also delivered a peak power density of 0.39 mW cm−2 at 2.65 mA cm−2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni (II)阳离子交换金属有机骨架制备氮掺杂碳包覆Ni纳米颗粒,用于电化学高效还原CO2
碳层包覆的核壳结构镍纳米粒子(指定为Ni NPs@NC)在电化学二氧化碳还原反应(CO2RR)中表现出显著的优势。在高温热解前,通过阳离子交换将Ni2+离子吸附在阳离子金属-有机骨架(CPM-72)上,制备了锚定在碳基体上的核壳结构Ni NPs@NC纳米颗粒。所设计的Ni NPs@NC催化剂表现出令人印象深刻的CO2RR性能,可以有效地将CO2转化为CO(一氧化碳)。在h型电池中,在−0.8 V(相对于RHE)和较高的CO分电流密度(jco)为−11.0 mA cm−2时,CO的法拉第效率(FE)达到了86.4%。在流式电池装置中,当jco增加到−38.7 mA cm−2时,CO FE进一步提高到98.6%。最后,锌- co2电池在2.65 mA cm - 2下的峰值功率密度为0.39 mW cm - 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electroanalytical Chemistry
Journal of Electroanalytical Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
7.50
自引率
6.70%
发文量
912
审稿时长
>12 weeks
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
期刊最新文献
Symmetrical dicyano-based imidazole molecule-assisted crystallization and defects passivation for high-performance perovskite solar cells 4,4′-Biphenyldicarboxylic acid as an anode for sodium-ion batteries: Different electrochemical behaviors in ester and ether-based electrolytes Cobalt-regulated NiFe-LDH for efficient electrocatalytic oxygen evolution in alkaline simulated industrial sewage and natural seawater Self-assembly crack metallic network applied on light-addressable potentiometric sensor for optimizing photoelectric conversion efficiency Continuous glucose metabolism monitoring platform for long-term analysis of tumor cell proliferation and drug response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1