Kendell M. Pawelec PhD , Jeremy M.L. Hix LATG , Erik M. Shapiro PhD
{"title":"Functional attachment of primary neurons and glia on radiopaque implantable biomaterials for nerve repair","authors":"Kendell M. Pawelec PhD , Jeremy M.L. Hix LATG , Erik M. Shapiro PhD","doi":"10.1016/j.nano.2023.102692","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Repairing peripheral nerve<span><span> injuries remains a challenge, even with use of auxiliary implantable biomaterial conduits. After implantation the location or function of polymeric devices cannot be assessed via clinical </span>imaging modalities<span><span>. Adding nanoparticle contrast agents into polymers can introduce radiopacity enabling imaging using computed </span>tomography. Radiopacity must be balanced with changes in </span></span></span>material properties<span><span> impacting device function. In this study radiopaque<span> composites were made from polycaprolactone and poly(lactide-co-glycolide) 50:50 and 85:15 with 0–40 wt% </span></span>tantalum oxide (TaO</span></span><sub>x</sub>) nanoparticles. To achieve radiopacity, ≥5 wt% TaO<sub>x</sub> was required, with ≥20 wt% TaO<sub>x</sub><span><span> reducing mechanical properties<span> and causing nanoscale </span></span>surface roughness<span><span>. Composite films facilitated </span>nerve regeneration<span> in an in vitro co-culture of adult glia and neurons, measured by markers for myelination. The ability of radiopaque films to support regeneration was driven by the properties of the polymer, with 5–20 wt% TaO</span></span></span><sub>x</sub> balancing imaging functionality with biological response and proving that in situ monitoring is feasible.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"52 ","pages":"Article 102692"},"PeriodicalIF":4.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Repairing peripheral nerve injuries remains a challenge, even with use of auxiliary implantable biomaterial conduits. After implantation the location or function of polymeric devices cannot be assessed via clinical imaging modalities. Adding nanoparticle contrast agents into polymers can introduce radiopacity enabling imaging using computed tomography. Radiopacity must be balanced with changes in material properties impacting device function. In this study radiopaque composites were made from polycaprolactone and poly(lactide-co-glycolide) 50:50 and 85:15 with 0–40 wt% tantalum oxide (TaOx) nanoparticles. To achieve radiopacity, ≥5 wt% TaOx was required, with ≥20 wt% TaOx reducing mechanical properties and causing nanoscale surface roughness. Composite films facilitated nerve regeneration in an in vitro co-culture of adult glia and neurons, measured by markers for myelination. The ability of radiopaque films to support regeneration was driven by the properties of the polymer, with 5–20 wt% TaOx balancing imaging functionality with biological response and proving that in situ monitoring is feasible.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.