Advanced materials for personal thermal and moisture management of health care workers wearing PPE

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2021-10-01 DOI:10.1016/j.mser.2021.100639
Lun Lou, Kaikai Chen, Jintu Fan
{"title":"Advanced materials for personal thermal and moisture management of health care workers wearing PPE","authors":"Lun Lou,&nbsp;Kaikai Chen,&nbsp;Jintu Fan","doi":"10.1016/j.mser.2021.100639","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the development of personal protective equipment (PPE) for health care workers (HCWs) attracted enormous attention, especially during the pandemic of COVID-19. The semi-permeable protective clothing and the prolonged working hours make the thermal comfort a critical issue for HCWs. Although there are many commercially available personal cooling products for PPE systems, they are either heavy in weight or have limited durability. Besides, most of the existing solutions cannot relieve the perspiration efficiently within the insolation gowns. To avoid heat strain and ensure a longtime thermal comfort, new strategies that provide efficient personal thermal and moisture management without compromising health protection are required. This paper reviews the emerging materials for protective gown layers and advanced technologies for personal thermal and moisture management of PPE systems. These materials and strategies are examined in detail with respect to their fundamental working principles, thermal and mechanical properties, fabrication methods as well as advantages and limitations in their prospective applications, aiming at stimulating creative thinking and multidisciplinary collaboration to improve the thermal comfort of PPEs.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mser.2021.100639","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X21000346","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 28

Abstract

In recent years, the development of personal protective equipment (PPE) for health care workers (HCWs) attracted enormous attention, especially during the pandemic of COVID-19. The semi-permeable protective clothing and the prolonged working hours make the thermal comfort a critical issue for HCWs. Although there are many commercially available personal cooling products for PPE systems, they are either heavy in weight or have limited durability. Besides, most of the existing solutions cannot relieve the perspiration efficiently within the insolation gowns. To avoid heat strain and ensure a longtime thermal comfort, new strategies that provide efficient personal thermal and moisture management without compromising health protection are required. This paper reviews the emerging materials for protective gown layers and advanced technologies for personal thermal and moisture management of PPE systems. These materials and strategies are examined in detail with respect to their fundamental working principles, thermal and mechanical properties, fabrication methods as well as advantages and limitations in their prospective applications, aiming at stimulating creative thinking and multidisciplinary collaboration to improve the thermal comfort of PPEs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
穿戴个人防护装备的卫生保健工作者个人热湿管理先进材料
近年来,卫生保健工作者个人防护装备(PPE)的开发引起了广泛关注,特别是在2019冠状病毒病大流行期间。半透性防护服和长时间的工作,使热舒适成为医护人员的关键问题。尽管市面上有许多用于个人防护装备系统的个人冷却产品,但它们要么重量很重,要么耐用性有限。此外,现有的解决方案大多不能有效地缓解防晒服内的排汗。为了避免热应变,并确保长期的热舒适,新的战略,提供有效的个人热和湿度管理,而不损害健康保护是必需的。本文综述了防护服层的新兴材料和个人防护系统热湿管理的先进技术。对这些材料和策略进行了详细的研究,包括它们的基本工作原理、热学和机械性能、制造方法以及它们在未来应用中的优势和局限性,旨在激发创造性思维和多学科合作,以提高ppe的热舒适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
How can cellulosic fibers enhance adhesion in engineered wood? Dimensional upgrading of 0D silica nanospheres to 3D networking toward robust aerogels for fire resistance and low-carbon applications Materials and design strategies for the electrochemical detection of antineoplastic drugs: Progress and perspectives Editorial Board Progress in the use of MoS2-based composites for microwave absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1