NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide – experimental and theoretical evidence of high electrochemical performance in sodium batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2022-05-01 DOI:10.1016/j.ensm.2022.02.038
Katarzyna Walczak , Anna Plewa , Corneliu Ghica , Wojciech Zając , Anita Trenczek-Zając , Marcin Zając , Janusz Toboła , Janina Molenda
{"title":"NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide – experimental and theoretical evidence of high electrochemical performance in sodium batteries","authors":"Katarzyna Walczak ,&nbsp;Anna Plewa ,&nbsp;Corneliu Ghica ,&nbsp;Wojciech Zając ,&nbsp;Anita Trenczek-Zając ,&nbsp;Marcin Zając ,&nbsp;Janusz Toboła ,&nbsp;Janina Molenda","doi":"10.1016/j.ensm.2022.02.038","DOIUrl":null,"url":null,"abstract":"<div><p><span>Li-ion batteries, widely used in portable electronics, electric vehicles, and energy storage systems<span>, are an integral element of our daily life. However, the limitation of lithium sources, which leads to high prices, prompts the search for alternatives. Recently there has been noticed a rapid interest in Na-ion batteries technology. Especially, suitable cathode structures are investigated to accumulate larger sodium ions. In this paper, the high entropy layered oxide NaMn</span></span><sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Ti<sub>0.2</sub>O<sub>2</sub><span> is presented which achieves superior electrochemical properties with a stable capacity of ca. 180 mAh g</span><sup>−1</sup><span>. The understanding of its high performance is based on a complex study of the multiphase intercalation mechanism. The combination of advanced structural analysis by XAS<span>, in situ XRD, TEM, and computational DFT modelling gives a new concept on the nature of O3-P3 structure reorganization. The presented experimental and theoretical evidence indicates that the P3 phase of layered oxides is energetically favourable for a lower sodium content for specific transition metal-oxide pair distance. Fundamental understanding of the nature of phase transformation is crucial for tailoring structural composition, where the desirable O3-P3 reorganization will occur, resulting in achieving high-performance cathodes.</span></span></p></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"47 ","pages":"Pages 500-514"},"PeriodicalIF":18.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829722001143","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 23

Abstract

Li-ion batteries, widely used in portable electronics, electric vehicles, and energy storage systems, are an integral element of our daily life. However, the limitation of lithium sources, which leads to high prices, prompts the search for alternatives. Recently there has been noticed a rapid interest in Na-ion batteries technology. Especially, suitable cathode structures are investigated to accumulate larger sodium ions. In this paper, the high entropy layered oxide NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 is presented which achieves superior electrochemical properties with a stable capacity of ca. 180 mAh g−1. The understanding of its high performance is based on a complex study of the multiphase intercalation mechanism. The combination of advanced structural analysis by XAS, in situ XRD, TEM, and computational DFT modelling gives a new concept on the nature of O3-P3 structure reorganization. The presented experimental and theoretical evidence indicates that the P3 phase of layered oxides is energetically favourable for a lower sodium content for specific transition metal-oxide pair distance. Fundamental understanding of the nature of phase transformation is crucial for tailoring structural composition, where the desirable O3-P3 reorganization will occur, resulting in achieving high-performance cathodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2高熵层状氧化物——钠电池高电化学性能的实验和理论证据
锂离子电池广泛应用于便携式电子产品、电动汽车和储能系统中,是我们日常生活中不可或缺的元素。然而,锂资源的有限性导致了高昂的价格,促使人们寻找替代品。最近,人们注意到对钠离子电池技术的快速兴趣。特别地,研究了合适的阴极结构来积累更大的钠离子。本文制备了高熵层状氧化物NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2,具有优异的电化学性能,稳定容量约为180 mAh g−1。对其高性能的理解是基于对多相插层机理的复杂研究。结合XAS、原位XRD、TEM和计算DFT建模等先进的结构分析方法,对O3-P3的结构重组性质有了新的认识。实验和理论证据表明,层状氧化物的P3相在能量上有利于降低特定过渡金属-氧化物对距离的钠含量。对相变本质的基本理解对于调整结构组成至关重要,从而实现理想的O3-P3重组,从而实现高性能阴极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Solid-state exfoliation growth mechanism of single-crystal Li-rich layered cathode materials An optimized electrically conductive Si-Fe matrix to boost the performance of Si electrodes in Li-ion Batteries Electrolyte for Zn Metal Battery Under Extreme Temperature Operations Design by Lewis Acid-base Chemically Mediated Polymerization of Cyclic Ether Surface Oxygen-locked LiNi0.6Mn0.4O2: Towards Stable Cycling at 4.7 V A 2-volt Aqueous Battery Enabled by Synergistic Effect of Cu2+/Cu+ Redox and Intercalation/Deintercalation in Copper Hexacyanoferrate Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1