The effect of the combination of microbial phytase and amino acid supplementation of diets for finishing pigs on P and N excretion and carcass quality.
{"title":"The effect of the combination of microbial phytase and amino acid supplementation of diets for finishing pigs on P and N excretion and carcass quality.","authors":"O P Walz, J Pallauf","doi":"10.1080/0003942032000161063","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to evaluate the effect of a combined low-protein, low-phosphorus diet supplemented with limiting amino acids and microbial phytase on performance, nutrient utilization and carcass characteristics of late-finishing barrows. 4 x 8 crossbreed barrows were continuously housed in metabolism cages from 70-110 kg BW and were fed diets, either conventional (A) or protein reduced (B) or protein and phosphorus reduced diets (C) based on barley, maize and soybean meal. Diet A (positive control) contained in air dry matter 13% and 10% CP as well as 0.49% and 0.42% P at growth phases I (70-100 kg BW) or 11 (100-110 kg BW), respectively. Diet B was low in CP (11.3%, 8.4%), diet C low in CP and low in P (CP: as B, P: 0.36%, 0.30%). To diet B the limiting amino acids lysine, methionine, threonine and trypthophan were added to meet the levels in diet A. To diet C the limiting amino acids and 800 FTU/kg Aspergillus-phytase were supplemented. At the end of the balance periods the barrows were slaughtered, the carcasses scored and loin chops, ham and Phalanx prima IV were analysed for nutrients and minerals. The CP or P reduction in diets B and C did not generally negatively affect growth, feed efficiency, absolute nitrogen retention or overall carcass performances of the pigs. With the low CP diets B and C, N excretion per unit BWG was decreased by about 23%. The addition of microbial phytase (diet C) increased apparent total tract digestibility of P by about 20%. In spite of 30% reduction of P intake (diet C), the absolute P retention related to 1 kg BW did not differ between treatments. Thus, phytase supplementation in diet C reduced P excretion per unit BWG by about 33%. Phytase raised apparent digestibility of Zn by about 20% but not Ca digestibility. Generally the carcass traits and meat characteristics were not affected by any of the diet strategies. Mineralization of the Phalanx prima IV was also similar in all treatment groups. However, phytase supplementation led to significantly increased zinc concentration in bones (25%). In contrast, Fe incorporation into the Phalanx prima IV was not affected. In general, the feeding regimen introduced in this experiment offers substantial benefits in maintaining a sustainable environmental-friendly pork production even at the stage of late-finishing barrows.</p>","PeriodicalId":8160,"journal":{"name":"Archiv fur Tierernahrung","volume":"57 6","pages":"413-28"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0003942032000161063","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv fur Tierernahrung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0003942032000161063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The objective of this study was to evaluate the effect of a combined low-protein, low-phosphorus diet supplemented with limiting amino acids and microbial phytase on performance, nutrient utilization and carcass characteristics of late-finishing barrows. 4 x 8 crossbreed barrows were continuously housed in metabolism cages from 70-110 kg BW and were fed diets, either conventional (A) or protein reduced (B) or protein and phosphorus reduced diets (C) based on barley, maize and soybean meal. Diet A (positive control) contained in air dry matter 13% and 10% CP as well as 0.49% and 0.42% P at growth phases I (70-100 kg BW) or 11 (100-110 kg BW), respectively. Diet B was low in CP (11.3%, 8.4%), diet C low in CP and low in P (CP: as B, P: 0.36%, 0.30%). To diet B the limiting amino acids lysine, methionine, threonine and trypthophan were added to meet the levels in diet A. To diet C the limiting amino acids and 800 FTU/kg Aspergillus-phytase were supplemented. At the end of the balance periods the barrows were slaughtered, the carcasses scored and loin chops, ham and Phalanx prima IV were analysed for nutrients and minerals. The CP or P reduction in diets B and C did not generally negatively affect growth, feed efficiency, absolute nitrogen retention or overall carcass performances of the pigs. With the low CP diets B and C, N excretion per unit BWG was decreased by about 23%. The addition of microbial phytase (diet C) increased apparent total tract digestibility of P by about 20%. In spite of 30% reduction of P intake (diet C), the absolute P retention related to 1 kg BW did not differ between treatments. Thus, phytase supplementation in diet C reduced P excretion per unit BWG by about 33%. Phytase raised apparent digestibility of Zn by about 20% but not Ca digestibility. Generally the carcass traits and meat characteristics were not affected by any of the diet strategies. Mineralization of the Phalanx prima IV was also similar in all treatment groups. However, phytase supplementation led to significantly increased zinc concentration in bones (25%). In contrast, Fe incorporation into the Phalanx prima IV was not affected. In general, the feeding regimen introduced in this experiment offers substantial benefits in maintaining a sustainable environmental-friendly pork production even at the stage of late-finishing barrows.