Nitrogen fixation with bacteria biohybrids

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2023-09-20 DOI:10.1016/j.joule.2023.08.013
Miaomiao Zhang , Wen Yu , Fengting Lv , Yiming Huang , Haotian Bai , Shu Wang
{"title":"Nitrogen fixation with bacteria biohybrids","authors":"Miaomiao Zhang ,&nbsp;Wen Yu ,&nbsp;Fengting Lv ,&nbsp;Yiming Huang ,&nbsp;Haotian Bai ,&nbsp;Shu Wang","doi":"10.1016/j.joule.2023.08.013","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen (N<sub>2</sub>) fixation stands as an indispensable natural process for the survival of all life forms on Earth. Within the grand tapestry of the N<sub>2</sub> cycle, biological N<sub>2</sub> fixation plays a vital role. But its optimal manifestation may be constrained by the metabolic generation of reducing equivalents from chemical substrates. Therefore, it becomes important to propose reasoned and feasible strategies to improve the production of reducing equivalents and thereby enhance N<sub>2</sub>-fixation efficiency. In a recent publication within <em>Angewandte Chemie International Edition</em>, Bazan and coworkers reported a light-driven N<sub>2</sub>-fixing bacteria biohybrid system supported by a broad light-harvesting conjugated oligoelectrolyte (COE-IC) and non-photosynthetic bacteria of <em>Azotobacter vinelandii</em> (<em>A. vinelandii</em>). The introduction of the optically active COE-IC enhances the conversion of N<sub>2</sub> to ammonia (NH<sub>3</sub>) and improves the photoinduced generation of biomass and L-amino acids of biological N<sub>2</sub> fixation systems.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"7 9","pages":"Pages 1943-1945"},"PeriodicalIF":38.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435123003586","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen (N2) fixation stands as an indispensable natural process for the survival of all life forms on Earth. Within the grand tapestry of the N2 cycle, biological N2 fixation plays a vital role. But its optimal manifestation may be constrained by the metabolic generation of reducing equivalents from chemical substrates. Therefore, it becomes important to propose reasoned and feasible strategies to improve the production of reducing equivalents and thereby enhance N2-fixation efficiency. In a recent publication within Angewandte Chemie International Edition, Bazan and coworkers reported a light-driven N2-fixing bacteria biohybrid system supported by a broad light-harvesting conjugated oligoelectrolyte (COE-IC) and non-photosynthetic bacteria of Azotobacter vinelandii (A. vinelandii). The introduction of the optically active COE-IC enhances the conversion of N2 to ammonia (NH3) and improves the photoinduced generation of biomass and L-amino acids of biological N2 fixation systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌生物杂交固氮
氮(N2)固定是地球上所有生命形式生存不可缺少的自然过程。在庞大的N2循环中,生物的N2固定起着至关重要的作用。但其最佳表现可能受到化学底物代谢产生还原性等价物的限制。因此,提出合理可行的策略来提高还原性当量的产生,从而提高固氮效率变得非常重要。在Angewandte Chemie International Edition最近发表的一篇文章中,Bazan及其同事报道了一种由广泛的光捕获共轭寡电解质(COE-IC)和非光合细菌Azotobacter vinelandii (a . vinelandii)支持的光驱动的n2固定细菌生物杂交系统。光学活性COE-IC的引入提高了N2到氨(NH3)的转化,并改善了生物N2固定体系中生物质和l -氨基酸的光诱导生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules Strained heterojunction enables high-performance, fully textured perovskite/silicon tandem solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1