{"title":"Modelling of ion permeation in K+ channels by nonequilibrium molecular dynamics simulations: I. Permeation energetics and structure stability.","authors":"A Neamţu, Daniela Suciu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Because of the great importance of physiological and pathophysiological processes in which ion channels are involved and because their operation is described by physicochemical laws, there have been many attempts to develop physical models able to describe the membrane permeability and also the structural and functional properties of the channel protein structures. In this study (in two parts) we present a series of simulations on a K+ channel model (KcsA) using Nonequilibrium Molecular Dynamics simulations (NEMD), in order to follow structure stability, permeation energetics and the possibility of obtaining quantitative information about the permeation process using the Linear Response Theory (LRT). On K+ ions were applied external forces to determine them to pass through the channel in a relatively small amount of time, accessible computationally. We ascertained a high resistance of the protein to deformation even in conditions when great forces were applied on ions (the system was far from equilibrium). The estimation of energy profiles in the course of ions passage through the channel demonstrates that these proteins create a conductivity pathway with no energetic barriers for ions movement across the channel (which could be present due to ions dehydration). The dynamic model used demonstrates (as proposed before in the literature after the examination of the static KcsA structure obtained by X-Ray crystallography) that this is due to the interaction of ions with the negatively charged carbonyl oxygens of the main polypeptide chain in the selectivity filter region.</p>","PeriodicalId":79373,"journal":{"name":"Romanian journal of physiology : physiological sciences","volume":"41 1-2","pages":"69-82"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian journal of physiology : physiological sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Because of the great importance of physiological and pathophysiological processes in which ion channels are involved and because their operation is described by physicochemical laws, there have been many attempts to develop physical models able to describe the membrane permeability and also the structural and functional properties of the channel protein structures. In this study (in two parts) we present a series of simulations on a K+ channel model (KcsA) using Nonequilibrium Molecular Dynamics simulations (NEMD), in order to follow structure stability, permeation energetics and the possibility of obtaining quantitative information about the permeation process using the Linear Response Theory (LRT). On K+ ions were applied external forces to determine them to pass through the channel in a relatively small amount of time, accessible computationally. We ascertained a high resistance of the protein to deformation even in conditions when great forces were applied on ions (the system was far from equilibrium). The estimation of energy profiles in the course of ions passage through the channel demonstrates that these proteins create a conductivity pathway with no energetic barriers for ions movement across the channel (which could be present due to ions dehydration). The dynamic model used demonstrates (as proposed before in the literature after the examination of the static KcsA structure obtained by X-Ray crystallography) that this is due to the interaction of ions with the negatively charged carbonyl oxygens of the main polypeptide chain in the selectivity filter region.