Maryline Paris, Catherine Bernard-Kargar, José Vilar, Nadim Kassis, Alain Ktorza
{"title":"Role of glucose in IRS signaling in rat pancreatic islets: specific effects and interplay with insulin.","authors":"Maryline Paris, Catherine Bernard-Kargar, José Vilar, Nadim Kassis, Alain Ktorza","doi":"10.1080/15438600490905169","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the possible interplay between insulin and glucose signaling pathways in rat pancreatic beta-cell with a special focus on the role of glucose in IRS signaling in vivo. Three groups of rats were constituted by combining simultaneous infusion during 48 h either of glucose and/or insulin, or glucose+diazoxide: Hyperglycemic-Hyperinsulinemic (HGHI), euglycemic-Hyperinsulinemic (eGHI), Hyperglycemic-euinsulinemic (HGeI). Control rats were infused with 0,9%NaCl. In HGHI and HGeI rats plasma glucose levels were maintained at 20-22 mmol/l. In eGHI rats, plasma glucose was not different from that of controls, whereas plasma insulin was much higher than in controls. In HGHI rats, IRS-2 mRNA expression, total protein and phosphorylated protein amounts were increased compared to controls. In HGeI rats, only IRS-2 mRNA expression was increased. No change was observed in eGHI rats whatever the parameter considered. In all groups, mRNA concentration of IRS-1 was similar to that of controls. The quantity of total and phosphorylated IRS-1 protein was dramatically increased in HGHI rats and to a lesser extent in eGHI rats. Neither mRNA nor IRS-1 protein expression were modified in HGeI rats. The data suggest that glucose and insulin play at once a specific and a complementary role in islet IRSs signaling. Especially, glucose stimulates IRS-2 mRNA expression whatever the insulin status and independently of the secretory process. The differential regulation of IRS-1 and IRS-2 expressions is in agreement with their supposed different involvement in the control of beta-cell growth and function.</p>","PeriodicalId":86960,"journal":{"name":"Experimental diabesity research","volume":"5 4","pages":"257-63"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15438600490905169","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental diabesity research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15438600490905169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We investigated the possible interplay between insulin and glucose signaling pathways in rat pancreatic beta-cell with a special focus on the role of glucose in IRS signaling in vivo. Three groups of rats were constituted by combining simultaneous infusion during 48 h either of glucose and/or insulin, or glucose+diazoxide: Hyperglycemic-Hyperinsulinemic (HGHI), euglycemic-Hyperinsulinemic (eGHI), Hyperglycemic-euinsulinemic (HGeI). Control rats were infused with 0,9%NaCl. In HGHI and HGeI rats plasma glucose levels were maintained at 20-22 mmol/l. In eGHI rats, plasma glucose was not different from that of controls, whereas plasma insulin was much higher than in controls. In HGHI rats, IRS-2 mRNA expression, total protein and phosphorylated protein amounts were increased compared to controls. In HGeI rats, only IRS-2 mRNA expression was increased. No change was observed in eGHI rats whatever the parameter considered. In all groups, mRNA concentration of IRS-1 was similar to that of controls. The quantity of total and phosphorylated IRS-1 protein was dramatically increased in HGHI rats and to a lesser extent in eGHI rats. Neither mRNA nor IRS-1 protein expression were modified in HGeI rats. The data suggest that glucose and insulin play at once a specific and a complementary role in islet IRSs signaling. Especially, glucose stimulates IRS-2 mRNA expression whatever the insulin status and independently of the secretory process. The differential regulation of IRS-1 and IRS-2 expressions is in agreement with their supposed different involvement in the control of beta-cell growth and function.