Collection and evaluation of existing data: an ecological risk assessment perspective.

James T Markwiese
{"title":"Collection and evaluation of existing data: an ecological risk assessment perspective.","authors":"James T Markwiese","doi":"10.1080/10529410390892043","DOIUrl":null,"url":null,"abstract":"<p><p>All scientific disciplines rely to some degree upon existing data to design new studies, test hypotheses, and make decisions. Because existing data can take many forms, a framework for addressing the quality of these data must be general and comprehensive. By nature of this inclusiveness, quality categories for existing data are necessarily broad. Effective employment of existing data requires the development of specific acceptance criteria from broad data quality categories. A framework is presented for collecting and evaluating existing data with examples of Environmental Protection Agency projects employing a tiered data review. The systematic planning inherent in a tiered review is described and attendant data quality considerations are developed in the context of an ecological risk assessment; specifically, the process is illustrated by defining an ecologically protective concentration of a chemical in soil.</p>","PeriodicalId":77339,"journal":{"name":"Quality assurance (San Diego, Calif.)","volume":"10 3-4","pages":"107-16"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10529410390892043","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality assurance (San Diego, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10529410390892043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

All scientific disciplines rely to some degree upon existing data to design new studies, test hypotheses, and make decisions. Because existing data can take many forms, a framework for addressing the quality of these data must be general and comprehensive. By nature of this inclusiveness, quality categories for existing data are necessarily broad. Effective employment of existing data requires the development of specific acceptance criteria from broad data quality categories. A framework is presented for collecting and evaluating existing data with examples of Environmental Protection Agency projects employing a tiered data review. The systematic planning inherent in a tiered review is described and attendant data quality considerations are developed in the context of an ecological risk assessment; specifically, the process is illustrated by defining an ecologically protective concentration of a chemical in soil.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现有数据的收集和评价:生态风险评估的视角。
所有的科学学科都在一定程度上依赖于现有的数据来设计新的研究、检验假设和做出决定。由于现有数据可以采取多种形式,因此处理这些数据质量的框架必须是通用的和全面的。由于这种包容性,现有数据的质量类别必然是广泛的。有效利用现有数据需要从广泛的数据质量类别中制定具体的接受标准。介绍了一个收集和评估现有数据的框架,并举例说明了环境保护署采用分层数据审查的项目。描述了分层审查中固有的系统规划,并在生态风险评估的背景下制定了相应的数据质量考虑因素;具体来说,这个过程是通过定义土壤中某种化学物质的生态保护浓度来说明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Establishing tolerance levels for customer complaints. Major issues in quality assessment and improvement of clinical hyperbaric services: an international perspective. The use of double anonymity in peer review: a decision whose time has come? Evaluation of customer satisfaction level of different projects. Peer Review as a QA Tool in Environmental Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1