Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules.

Akihiro Kusumi, Chieko Nakada, Ken Ritchie, Kotono Murase, Kenichi Suzuki, Hideji Murakoshi, Rinshi S Kasai, Junko Kondo, Takahiro Fujiwara
{"title":"Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules.","authors":"Akihiro Kusumi,&nbsp;Chieko Nakada,&nbsp;Ken Ritchie,&nbsp;Kotono Murase,&nbsp;Kenichi Suzuki,&nbsp;Hideji Murakoshi,&nbsp;Rinshi S Kasai,&nbsp;Junko Kondo,&nbsp;Takahiro Fujiwara","doi":"10.1146/annurev.biophys.34.040204.144637","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in single-molecule tracking methods with nanometer-level precision now allow researchers to observe the movement, recruitment, and activation of single molecules in the plasma membrane in living cells. In particular, on the basis of the observations by high-speed single-particle tracking at a frame rate of 40,000 frames s(1), the partitioning of the fluid plasma membrane into submicron compartments throughout the cell membrane and the hop diffusion of virtually all the molecules have been proposed. This could explain why the diffusion coefficients in the plasma membrane are considerably smaller than those in artificial membranes, and why the diffusion coefficient is reduced upon molecular complex formation (oligomerization-induced trapping). In this review, we first describe the high-speed single-molecule tracking methods, and then we critically review a new model of a partitioned fluid plasma membrane and the involvement of the actin-based membrane-skeleton \"fences\" and anchored-transmembrane protein \"pickets\" in the formation of compartment boundaries.</p>","PeriodicalId":8270,"journal":{"name":"Annual review of biophysics and biomolecular structure","volume":"34 ","pages":"351-78"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.biophys.34.040204.144637","citationCount":"1079","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biophysics and biomolecular structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.biophys.34.040204.144637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1079

Abstract

Recent advancements in single-molecule tracking methods with nanometer-level precision now allow researchers to observe the movement, recruitment, and activation of single molecules in the plasma membrane in living cells. In particular, on the basis of the observations by high-speed single-particle tracking at a frame rate of 40,000 frames s(1), the partitioning of the fluid plasma membrane into submicron compartments throughout the cell membrane and the hop diffusion of virtually all the molecules have been proposed. This could explain why the diffusion coefficients in the plasma membrane are considerably smaller than those in artificial membranes, and why the diffusion coefficient is reduced upon molecular complex formation (oligomerization-induced trapping). In this review, we first describe the high-speed single-molecule tracking methods, and then we critically review a new model of a partitioned fluid plasma membrane and the involvement of the actin-based membrane-skeleton "fences" and anchored-transmembrane protein "pickets" in the formation of compartment boundaries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质膜概念从二维连续流体到分割流体的范式转换:膜分子的高速单分子跟踪。
纳米级精度的单分子跟踪方法的最新进展使研究人员能够观察活细胞质膜中单分子的运动、招募和激活。特别是,基于40000帧/ s(1)帧速率下的高速单粒子跟踪观察,提出了流体质膜在整个细胞膜上划分为亚微米级的区室,以及几乎所有分子的跳跃扩散。这可以解释为什么质膜中的扩散系数比人工膜中的扩散系数要小得多,以及为什么扩散系数在分子复合物形成(寡聚诱导诱捕)时降低。在这篇综述中,我们首先描述了高速单分子跟踪方法,然后我们批判性地回顾了一种新的分隔流体质膜模型,以及基于肌动蛋白的膜骨架“栅栏”和锚定跨膜蛋白“纠察”在室边界形成中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions. Phase boundaries and biological membranes. Calculation of protein-ligand binding affinities. Synthetic gene circuits: design with directed evolution. Bilayer thickness and membrane protein function: an energetic perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1