Chaohua Yan , Zeljka Korade Mirnics , Carmel F. Portugal , Ye Liang , Karen D. Nylander , Marcelo Rudzinski , Clara Zaccaro , H. Uri Saragovi , Nina Felice Schor
{"title":"Cholesterol biosynthesis and the pro-apoptotic effects of the p75 nerve growth factor receptor in PC12 pheochromocytoma cells","authors":"Chaohua Yan , Zeljka Korade Mirnics , Carmel F. Portugal , Ye Liang , Karen D. Nylander , Marcelo Rudzinski , Clara Zaccaro , H. Uri Saragovi , Nina Felice Schor","doi":"10.1016/j.molbrainres.2005.05.025","DOIUrl":null,"url":null,"abstract":"<div><p>Neocarzinostatin (NCS), an enediyne antimitotic agent, induces cell death in both p75NTR neurotrophin receptor (NTR)-positive and p75NTR-negative PC12 cells in a concentration-dependent fashion. However, p75NTR-positive cells demonstrate a higher susceptibility to NCS-induced cell damage. Furthermore, treatment of p75NTR-positive cells with the p75NTR-specific ligand, MC192, resulted in apoptosis, while treatment of these cells with the TrkA-specific ligand, NGF–mAbNGF30, protected them from NCS-induced death, implying that both the naked and liganded p75NTR receptors have a pro-apoptotic effect on PC12 cells. Microarray studies aimed at examining differential gene expression between p75NTR-positive and p75NTR-negative cells suggested that enzymes of the cholesterol biosynthetic pathway are differentially expressed. We therefore tested the hypothesis that altered cholesterol biosynthesis contributes directly to the pro-apoptotic effects of p75NTR in this PC12 cell-NCS model. Subsequent Northern blotting studies confirmed that the expression of p75NTR is associated with the upregulation of cholesterol biosynthetic enzymes including 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), farnesyl-diphosphate synthase, and 7-dehydro-cholesterol reductase. Mevastatin, an HMG CoA reductase inhibitor, converts the apoptosis susceptibility of p75NTR-positive cells to that of p75NTR-negative cells. It does so at concentrations that do not themselves alter cell survival. These studies provide evidence that the pro-apoptotic effects of p75NTR in PC12 cells are related to the upregulation of cholesterol biosynthetic enzymes and consequent increased cholesterol biosynthesis.</p></div>","PeriodicalId":100932,"journal":{"name":"Molecular Brain Research","volume":"139 2","pages":"Pages 225-234"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molbrainres.2005.05.025","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169328X05002299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Neocarzinostatin (NCS), an enediyne antimitotic agent, induces cell death in both p75NTR neurotrophin receptor (NTR)-positive and p75NTR-negative PC12 cells in a concentration-dependent fashion. However, p75NTR-positive cells demonstrate a higher susceptibility to NCS-induced cell damage. Furthermore, treatment of p75NTR-positive cells with the p75NTR-specific ligand, MC192, resulted in apoptosis, while treatment of these cells with the TrkA-specific ligand, NGF–mAbNGF30, protected them from NCS-induced death, implying that both the naked and liganded p75NTR receptors have a pro-apoptotic effect on PC12 cells. Microarray studies aimed at examining differential gene expression between p75NTR-positive and p75NTR-negative cells suggested that enzymes of the cholesterol biosynthetic pathway are differentially expressed. We therefore tested the hypothesis that altered cholesterol biosynthesis contributes directly to the pro-apoptotic effects of p75NTR in this PC12 cell-NCS model. Subsequent Northern blotting studies confirmed that the expression of p75NTR is associated with the upregulation of cholesterol biosynthetic enzymes including 3-hydroxy-3-methylglutaryl CoA reductase (HMG CoA reductase), farnesyl-diphosphate synthase, and 7-dehydro-cholesterol reductase. Mevastatin, an HMG CoA reductase inhibitor, converts the apoptosis susceptibility of p75NTR-positive cells to that of p75NTR-negative cells. It does so at concentrations that do not themselves alter cell survival. These studies provide evidence that the pro-apoptotic effects of p75NTR in PC12 cells are related to the upregulation of cholesterol biosynthetic enzymes and consequent increased cholesterol biosynthesis.