Wishrawana S Ratnayake, Christopher A Apostolatos, Sloan Breedy, Clare L Dennison, Robert Hill, Mildred Acevedo-Duncan
{"title":"Atypical PKCs activate Vimentin to facilitate prostate cancer cell motility and invasion.","authors":"Wishrawana S Ratnayake, Christopher A Apostolatos, Sloan Breedy, Clare L Dennison, Robert Hill, Mildred Acevedo-Duncan","doi":"10.1080/19336918.2021.1882782","DOIUrl":null,"url":null,"abstract":"<p><p>Atypical protein kinase C (aPKC) are involved in progression of many human cancers. Vimentin is expressed during epithelial to mesenchymal transition (EMT). Molecular dynamics of Vimentin intermediate filaments (VIFs) play a key role in metastasis. This article is an effort to provide thorough understanding of the relationship between Vimentin and aPKCs . We demonstrate that diminution of aPKCs lead to attenuate prostate cellular metastasis through the downregulation of Vimentin expression. <i>si</i>RNA knocked-down SNAIL1 and PRRX1 reduce aPKC activity along with Vimentin. Results suggest that aPKCs target multiple activation sites (Ser33/39/56) on Vimentin and therefore is essential for VIF dynamics regulation during the metastasis of prostate cancer cells. Understanding the aPKC related molecular mechanisms may provide a novel therapeutic path for prostate carcinoma.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2021.1882782","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2021.1882782","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 12
Abstract
Atypical protein kinase C (aPKC) are involved in progression of many human cancers. Vimentin is expressed during epithelial to mesenchymal transition (EMT). Molecular dynamics of Vimentin intermediate filaments (VIFs) play a key role in metastasis. This article is an effort to provide thorough understanding of the relationship between Vimentin and aPKCs . We demonstrate that diminution of aPKCs lead to attenuate prostate cellular metastasis through the downregulation of Vimentin expression. siRNA knocked-down SNAIL1 and PRRX1 reduce aPKC activity along with Vimentin. Results suggest that aPKCs target multiple activation sites (Ser33/39/56) on Vimentin and therefore is essential for VIF dynamics regulation during the metastasis of prostate cancer cells. Understanding the aPKC related molecular mechanisms may provide a novel therapeutic path for prostate carcinoma.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.