Model predictive control optimisation using the metaheuristic optimisation for blood pressure control.

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2021-04-01 Epub Date: 2021-02-14 DOI:10.1049/syb2.12012
Mohammad Reza Ahmadpour, Hamid Ghadiri, Saeed Reza Hajian
{"title":"Model predictive control optimisation using the metaheuristic optimisation for blood pressure control.","authors":"Mohammad Reza Ahmadpour,&nbsp;Hamid Ghadiri,&nbsp;Saeed Reza Hajian","doi":"10.1049/syb2.12012","DOIUrl":null,"url":null,"abstract":"<p><p>Given the importance of high blood pressure, it is important to control and maintain a constant blood pressure level in the normal state. The main aim of this article is to design a model predictive controller with a genetic algorithm (GA) for the regulation of arterial blood pressure. The present study is an applied cross-sectional study. In order to do this research, studies related to designing mathematical models for blood pressure regulation and mechanical models for heart muscle and pressure sensors are investigated. Then, a model predictive controller with GA is designed for blood pressure control. All control and design operations are performed in the MATLAB software. According to the viscoelasticity of blood, transducer, and injection set, we can assume the mechanical model as Mass, Spring, and Damper. Initially, the patient's blood pressure is lower than normal, and after controlling, the patient's blood pressure returned to normal. By using a GA-based model predictive control (MPC), mathematical validation, and mechanical model, the patient's blood pressure can be adjusted and maintained. The simulation result shows that the GA-based MPC offers acceptable response and speed of operation and the proposed controller can achieve good tracking and disturbance rejection.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"15 2","pages":"41-52"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675817/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1049/syb2.12012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Given the importance of high blood pressure, it is important to control and maintain a constant blood pressure level in the normal state. The main aim of this article is to design a model predictive controller with a genetic algorithm (GA) for the regulation of arterial blood pressure. The present study is an applied cross-sectional study. In order to do this research, studies related to designing mathematical models for blood pressure regulation and mechanical models for heart muscle and pressure sensors are investigated. Then, a model predictive controller with GA is designed for blood pressure control. All control and design operations are performed in the MATLAB software. According to the viscoelasticity of blood, transducer, and injection set, we can assume the mechanical model as Mass, Spring, and Damper. Initially, the patient's blood pressure is lower than normal, and after controlling, the patient's blood pressure returned to normal. By using a GA-based model predictive control (MPC), mathematical validation, and mechanical model, the patient's blood pressure can be adjusted and maintained. The simulation result shows that the GA-based MPC offers acceptable response and speed of operation and the proposed controller can achieve good tracking and disturbance rejection.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用血压控制的元启发式优化模型预测控制优化。
鉴于高血压的重要性,在正常状态下控制和维持恒定的血压水平是很重要的。本文的主要目的是设计一种基于遗传算法的模型预测控制器,用于动脉血压的调节。本研究为应用横断面研究。为此,对血压调节的数学模型设计、心肌和压力传感器的力学模型设计进行了研究。然后,设计了一种基于遗传算法的模型预测控制器用于血压控制。所有的控制和设计操作都在MATLAB软件中完成。根据血液、换能器和注射装置的粘弹性,可以将其力学模型设为质量、弹簧和阻尼器。最初患者血压低于正常值,经控制后血压恢复正常。通过基于遗传算法的模型预测控制(MPC)、数学验证和力学模型,可以调节和维持患者的血压。仿真结果表明,基于遗传算法的MPC具有良好的响应性能和运行速度,具有良好的跟踪性能和抗干扰能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
Identification of CCR7 and CBX6 as key biomarkers in abdominal aortic aneurysm: Insights from multi-omics data and machine learning analysis. Identification of co-localised transcription factors based on paired motifs analysis. DDANet: A deep dilated attention network for intracerebral haemorrhage segmentation. Human essential gene identification based on feature fusion and feature screening. Inference and analysis of cell-cell communication of non-myeloid circulating cells in late sepsis based on single-cell RNA-seq.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1