JAK2/STAT3 inhibitor reduced 5-FU resistance and autophagy through ATF6-mediated ER stress.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Receptors and Signal Transduction Pub Date : 2022-04-01 Epub Date: 2021-02-18 DOI:10.1080/10799893.2021.1887219
Lijuan Ma, Youhui Wang
{"title":"JAK2/STAT3 inhibitor reduced 5-FU resistance and autophagy through ATF6-mediated ER stress.","authors":"Lijuan Ma,&nbsp;Youhui Wang","doi":"10.1080/10799893.2021.1887219","DOIUrl":null,"url":null,"abstract":"<p><p>Drug resistance seriously limits the efficacy of chemotherapy drugs and hinders successful treatment in patients with gastric cancer. Endoplasmic reticulum (ER) and autophagy are recognized to be one of the mechanisms involving the drug resistance of gastric cancer. The mechanisms of action of JAK2/STAT3 pathway were investigated in AGS cells with drug resistance of 5-fluorouracil (5-FU) by corresponding inhibitors. We firstly analyzed the effects of JAK2/STAT3 inhibitor on the expression of drug resistance genes, autophagy markers, and ER stress-related markers on AGS/5-FU cells by Western blot. Whether JAK2/STAT3 pathway regulated the transcription of ATF6 was investigated through luciferase reporter assay. The expression of LC3B was detected by immunofluorescence assay. Next, ER stress inhibitor and ATF6 overexpression plasmid were respectively used to treat AGS/5-FU cells for analyzing whether JAK2/STAT3 pathway regulated ER stress. The results showed that JAK2 inhibitor or STAT3 inhibitor significantly altered the expression of these proteins and suppressed the activities of ATF6 promoter. Intriguingly, ATP6 overexpression could markedly reverse their effects. Moreover, similar effects to JAK2 inhibitor or STAT3 inhibitor appeared in ER stress inhibitor-treated group. These findings indicated that the involvement of JAK2/STAT3 pathway in regulating ER stress affected the 5-FU resistance of AGS cells and autophagy, which was mediated by ATF6. Targeting JAK2/STAT3 pathway could be a potential approach to decrease the 5-FU resistance of gastric cancer and enhance the sensitivity of gastric cancer to 5-FU. Additionally, our study offers new insights into the molecular mechanisms underlying the resistance of gastric cancer to 5-FU.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2021.1887219","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2021.1887219","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Drug resistance seriously limits the efficacy of chemotherapy drugs and hinders successful treatment in patients with gastric cancer. Endoplasmic reticulum (ER) and autophagy are recognized to be one of the mechanisms involving the drug resistance of gastric cancer. The mechanisms of action of JAK2/STAT3 pathway were investigated in AGS cells with drug resistance of 5-fluorouracil (5-FU) by corresponding inhibitors. We firstly analyzed the effects of JAK2/STAT3 inhibitor on the expression of drug resistance genes, autophagy markers, and ER stress-related markers on AGS/5-FU cells by Western blot. Whether JAK2/STAT3 pathway regulated the transcription of ATF6 was investigated through luciferase reporter assay. The expression of LC3B was detected by immunofluorescence assay. Next, ER stress inhibitor and ATF6 overexpression plasmid were respectively used to treat AGS/5-FU cells for analyzing whether JAK2/STAT3 pathway regulated ER stress. The results showed that JAK2 inhibitor or STAT3 inhibitor significantly altered the expression of these proteins and suppressed the activities of ATF6 promoter. Intriguingly, ATP6 overexpression could markedly reverse their effects. Moreover, similar effects to JAK2 inhibitor or STAT3 inhibitor appeared in ER stress inhibitor-treated group. These findings indicated that the involvement of JAK2/STAT3 pathway in regulating ER stress affected the 5-FU resistance of AGS cells and autophagy, which was mediated by ATF6. Targeting JAK2/STAT3 pathway could be a potential approach to decrease the 5-FU resistance of gastric cancer and enhance the sensitivity of gastric cancer to 5-FU. Additionally, our study offers new insights into the molecular mechanisms underlying the resistance of gastric cancer to 5-FU.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JAK2/STAT3抑制剂通过atf6介导的内质网应激降低5-FU耐药和自噬。
耐药严重限制了化疗药物的疗效,阻碍了胃癌患者的成功治疗。内质网和自噬被认为是胃癌耐药的机制之一。研究了JAK2/STAT3通路在5-氟尿嘧啶(5-FU)耐药AGS细胞中的作用机制。我们首先通过Western blot分析了JAK2/STAT3抑制剂对AGS/5-FU细胞耐药基因、自噬标记物和内质网应激相关标记物表达的影响。通过荧光素酶报告基因试验研究JAK2/STAT3通路是否调控ATF6的转录。免疫荧光法检测LC3B的表达。接下来,利用内质网应激抑制剂和ATF6过表达质粒分别处理AGS/5-FU细胞,分析JAK2/STAT3通路是否调控内质网应激。结果表明,JAK2抑制剂或STAT3抑制剂显著改变了这些蛋白的表达,抑制了ATF6启动子的活性。有趣的是,ATP6过表达可以显著逆转它们的作用。内质网应激抑制剂组与JAK2抑制剂或STAT3抑制剂作用相似。上述结果表明,JAK2/STAT3通路参与内质网应激调节,影响AGS细胞的5-FU耐药和ATF6介导的自噬。靶向JAK2/STAT3通路可能是降低胃癌5-FU耐药、增强胃癌对5-FU敏感性的潜在途径。此外,我们的研究为胃癌对5-FU耐药的分子机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Receptors and Signal Transduction
Journal of Receptors and Signal Transduction 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services: BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.
期刊最新文献
Allosteric covalent inhibition of TOE1 as potential unexplored anti-cancer target: structure-based virtual screening and covalent molecular dynamics analysis. Virtual screening, molecular docking and dynamics simulation studies to identify potential agonists of orphan receptor GPR78 targeting CNS disorders. An in-silico approach - molecular docking analysis of flavonoids against GSK-3β and TNF-α targets in Alzheimer's disease. Heat shock protein (Hsp27)-ceramide synthase (Cers1) protein-protein interactions provide a new avenue for unexplored anti-cancer mechanism and therapy. The vasodilator effect of Eugenol on uterine artery - potential therapeutic applications in pregnancy-associated hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1