Genome-Wide Characterization and Expression Analysis of the HD-ZIP Gene Family in Response to Salt Stress in Pepper.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Genomics Pub Date : 2021-01-25 eCollection Date: 2021-01-01 DOI:10.1155/2021/8105124
Zhongrong Zhang, Ranran Zhu, Xuehua Ji, Hui Ji Li, Hui Lv, Hai Ying Zhang
{"title":"Genome-Wide Characterization and Expression Analysis of the HD-ZIP Gene Family in Response to Salt Stress in Pepper.","authors":"Zhongrong Zhang,&nbsp;Ranran Zhu,&nbsp;Xuehua Ji,&nbsp;Hui Ji Li,&nbsp;Hui Lv,&nbsp;Hai Ying Zhang","doi":"10.1155/2021/8105124","DOIUrl":null,"url":null,"abstract":"<p><p>HD-ZIP is a unique type of transcription factor in plants, which are closely linked to the regulation of plant growth and development, the response to abiotic stress, and disease resistance. However, there is little known about the HD-ZIP gene family of pepper. In this study, 40 HD-ZIP family members were analyzed in the pepper genome. The analysis indicated that the introns number of Ca-HD-ZIP varied from 1 to 17; the number of amino acids was between 119 and 841; the theoretical isoelectric point was between 4.54 and 9.85; the molecular weight was between 14.04 and 92.56; most of them were unstable proteins. The phylogenetic tree divided <i>CaHD-ZIP</i> into 4 subfamilies; 40 <i>CaHD-ZIP</i> genes were located on different chromosomes, and all of them contained the motif 1; two pairs of <i>CaHD-ZIP</i> parallel genes of six paralogism genes were fragment duplications which occurred in 58.28~88.24 million years ago. There were multiple pressure-related action elements upstream of the start codon of the <i>HD-Z-IP</i> family. Protein interaction network proved to be coexpression phenomenon between <i>ATML1</i> (<i>CaH-DZ22, CaHDZ32</i>) and <i>At4g048909</i> (<i>CaHDZ12</i>, <i>CaHDZ31</i>), and three regions of them were highly homology. The expression level of <i>CaHD-ZIP</i> gene was different with tissues and developmental stages, which suggested that CaHD-ZIP may be involved in biological functions during pepper progress. In addition, Pepper HD-ZIP I and II genes played a major role in salt stress. <i>CaHDZ03</i>, <i>CaHDZ 10</i>, <i>CaHDZ17</i>, <i>CaHDZ25</i>, <i>CaHDZ34</i>, and <i>CaHDZ35</i> were significantly induced in response to salt stress. Notably, the expression of <i>CaHDZ07</i>, <i>CaHDZ17</i>, <i>CaHDZ26</i>, and <i>CaHDZ30</i>, homologs of Arabidopsis <i>AtHB12</i> and <i>AtHB7</i> genes, was significantly upregulated by salt stresses. <i>CaHDZ03</i> possesses two closely linked ABA action elements, and its expression level increased significantly at 4 h under salt stress. qRT-P-CR and transcription analysis showed that the expression of <i>CaHDZ03</i> and CaHDZ10 was upregulated under short-term salt stress, but <i>CaHDZ10</i> was downregulated with long-term salt stress, which provided a theoretical basis for research the function of <i>Ca-HDZIP</i> in response to abiotic stress.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":"2021 ","pages":"8105124"},"PeriodicalIF":2.6000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7869415/pdf/","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/8105124","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 11

Abstract

HD-ZIP is a unique type of transcription factor in plants, which are closely linked to the regulation of plant growth and development, the response to abiotic stress, and disease resistance. However, there is little known about the HD-ZIP gene family of pepper. In this study, 40 HD-ZIP family members were analyzed in the pepper genome. The analysis indicated that the introns number of Ca-HD-ZIP varied from 1 to 17; the number of amino acids was between 119 and 841; the theoretical isoelectric point was between 4.54 and 9.85; the molecular weight was between 14.04 and 92.56; most of them were unstable proteins. The phylogenetic tree divided CaHD-ZIP into 4 subfamilies; 40 CaHD-ZIP genes were located on different chromosomes, and all of them contained the motif 1; two pairs of CaHD-ZIP parallel genes of six paralogism genes were fragment duplications which occurred in 58.28~88.24 million years ago. There were multiple pressure-related action elements upstream of the start codon of the HD-Z-IP family. Protein interaction network proved to be coexpression phenomenon between ATML1 (CaH-DZ22, CaHDZ32) and At4g048909 (CaHDZ12, CaHDZ31), and three regions of them were highly homology. The expression level of CaHD-ZIP gene was different with tissues and developmental stages, which suggested that CaHD-ZIP may be involved in biological functions during pepper progress. In addition, Pepper HD-ZIP I and II genes played a major role in salt stress. CaHDZ03, CaHDZ 10, CaHDZ17, CaHDZ25, CaHDZ34, and CaHDZ35 were significantly induced in response to salt stress. Notably, the expression of CaHDZ07, CaHDZ17, CaHDZ26, and CaHDZ30, homologs of Arabidopsis AtHB12 and AtHB7 genes, was significantly upregulated by salt stresses. CaHDZ03 possesses two closely linked ABA action elements, and its expression level increased significantly at 4 h under salt stress. qRT-P-CR and transcription analysis showed that the expression of CaHDZ03 and CaHDZ10 was upregulated under short-term salt stress, but CaHDZ10 was downregulated with long-term salt stress, which provided a theoretical basis for research the function of Ca-HDZIP in response to abiotic stress.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辣椒HD-ZIP基因家族对盐胁迫的全基因组特征及表达分析
HD-ZIP是植物中一类独特的转录因子,与植物生长发育的调控、对非生物胁迫的响应、抗病性等密切相关。然而,人们对辣椒HD-ZIP基因家族知之甚少。本研究对辣椒HD-ZIP家族的40个成员进行了基因组分析。分析表明,Ca-HD-ZIP的内含子数量在1 ~ 17个之间;氨基酸数量在119 ~ 841之间;理论等电点在4.54 ~ 9.85之间;分子量在14.04 ~ 92.56之间;它们大多数是不稳定的蛋白质。系统发育树将CaHD-ZIP分为4个亚科;40个CaHD-ZIP基因位于不同的染色体上,均含有基序1;6个谬误推理基因中的2对CaHD-ZIP平行基因为片段重复,发生在5828 ~ 8824万年前。HD-Z-IP家族的起始密码子上游存在多个与压力相关的作用元件。蛋白相互作用网络证实ATML1 (CaH-DZ22、CaHDZ32)与At4g048909 (CaHDZ12、CaHDZ31)之间存在共表达现象,且三个区域高度同源。不同组织和发育阶段CaHD-ZIP基因的表达水平不同,说明CaHD-ZIP可能参与辣椒发育过程中的生物学功能。另外,辣椒HD-ZIP I和II基因在盐胁迫中起主要作用。CaHDZ03、cahdz10、CaHDZ17、CaHDZ25、CaHDZ34和CaHDZ35在盐胁迫下受到显著诱导。值得注意的是,拟南芥AtHB12和AtHB7基因的同源基因CaHDZ07、CaHDZ17、CaHDZ26和CaHDZ30的表达在盐胁迫下显著上调。CaHDZ03具有两个紧密相连的ABA作用元件,在盐胁迫下,其表达量在4 h时显著增加。qRT-P-CR和转录分析显示,CaHDZ03和CaHDZ10在短期盐胁迫下表达上调,而CaHDZ10在长期盐胁迫下表达下调,这为研究Ca-HDZIP在非生物胁迫下的功能提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Genomics
International Journal of Genomics BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
5.40
自引率
0.00%
发文量
33
审稿时长
17 weeks
期刊介绍: International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.
期刊最新文献
Transcription Analysis of the THBS2 Gene through Regulation by Potential Noncoding Diagnostic Biomarkers and Oncogenes of Gastric Cancer in the ECM-Receptor Interaction Signaling Pathway: Integrated System Biology and Experimental Investigation Transmembrane and Ubiquitin-Like Domain-Containing 1 Promotes Glioma Growth and Indicates Unfavorable Prognosis Validation of a Proteomic-Based Prognostic Model for Breast Cancer and Immunological Analysis The Oncogenic Role of KLF7 in Colon Adenocarcinoma and Therapeutic Perspectives CTSK and PLAU as Prognostic Biomarker and Related to Immune Infiltration in Pancreatic Cancer: Evidence from Bioinformatics Analysis and qPCR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1