Gaussian Process State-Space Models with Time-Varying Parameters and Inducing Points.

Yuhao Liu, Petar M Djurić
{"title":"Gaussian Process State-Space Models with Time-Varying Parameters and Inducing Points.","authors":"Yuhao Liu, Petar M Djurić","doi":"10.23919/Eusipco47968.2020.9287481","DOIUrl":null,"url":null,"abstract":"<p><p>We propose time-varying Gaussian process state-space models (TVGPSSM) whose hyper-parameters vary with time. The models have the ability to estimate time-varying functions and thereby increase flexibility to extract information from observed data. The proposed inference approach makes use of time-varying inducing points to adapt to changes of the function, and it exploits hierarchical importance sampling. The experimental results show that the approach has better performance than that of the standard Gaussian process.</p>","PeriodicalId":87340,"journal":{"name":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","volume":"2020 ","pages":"1462-1466"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890411/pdf/nihms-1670261.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... European Signal Processing Conference (EUSIPCO). EUSIPCO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose time-varying Gaussian process state-space models (TVGPSSM) whose hyper-parameters vary with time. The models have the ability to estimate time-varying functions and thereby increase flexibility to extract information from observed data. The proposed inference approach makes use of time-varying inducing points to adapt to changes of the function, and it exploits hierarchical importance sampling. The experimental results show that the approach has better performance than that of the standard Gaussian process.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有时变参数和诱导点的高斯过程状态空间模型
我们提出了超参数随时间变化的时变高斯过程状态空间模型(TVGPSSM)。这些模型能够估计时变函数,从而提高了从观测数据中提取信息的灵活性。所提出的推理方法利用时变诱导点来适应函数的变化,并利用了分层重要性采样。实验结果表明,该方法的性能优于标准高斯过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete Representation Learning for Multivariate Time Series. Estimation of Consecutively Missed Samples in Fetal Heart Rate Recordings. Gaussian Process State-Space Models with Time-Varying Parameters and Inducing Points. Improved Regularized Reconstruction for Simultaneous Multi-Slice Cardiac MRI T 1 Mapping. Numerical stability of spline-based Gabor-like systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1