Existence and global asymptotic stability criteria for nonlinear neutral-type neural networks involving multiple time delays using a quadratic-integral Lyapunov functional.
{"title":"Existence and global asymptotic stability criteria for nonlinear neutral-type neural networks involving multiple time delays using a quadratic-integral Lyapunov functional.","authors":"Yousef Gholami","doi":"10.1186/s13662-021-03274-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we consider a standard class of the neural networks and propose an investigation of the global asymptotic stability of these neural systems. The main aim of this investigation is to define a novel Lyapunov functional having quadratic-integral form and use it to reach a stability criterion for the under study neural networks. Since some fundamental characteristics, such as nonlinearity, including time-delays and neutrality, help us design a more realistic and applicable model of neural systems, we will use all of these factors in our neural dynamical systems. At the end, some numerical simulations are presented to illustrate the obtained stability criterion and show the essential role of the time-delays in appearance of the oscillations and stability in the neural networks.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":"2021 1","pages":"112"},"PeriodicalIF":4.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-021-03274-3","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-021-03274-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper we consider a standard class of the neural networks and propose an investigation of the global asymptotic stability of these neural systems. The main aim of this investigation is to define a novel Lyapunov functional having quadratic-integral form and use it to reach a stability criterion for the under study neural networks. Since some fundamental characteristics, such as nonlinearity, including time-delays and neutrality, help us design a more realistic and applicable model of neural systems, we will use all of these factors in our neural dynamical systems. At the end, some numerical simulations are presented to illustrate the obtained stability criterion and show the essential role of the time-delays in appearance of the oscillations and stability in the neural networks.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.