Hiroyuki Kawai, Fumiko Yagyu, Aki Terada, Tsukasa Matsunaga, Manabu Inobe
{"title":"CD28 confers CD4+ T cells with resistance to cyclosporin A and tacrolimus but to different degrees.","authors":"Hiroyuki Kawai, Fumiko Yagyu, Aki Terada, Tsukasa Matsunaga, Manabu Inobe","doi":"10.12932/AP-270820-0949","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cyclosporin A (CSA) and tacrolimus (TAC) suppress T-cell activation and subsequent proliferation by inhibiting calcineurin. Though they have the same target, CSA and TAC have quite different molecular structures, indicating quantitative and/or qualitative differences in their effects.</p><p><strong>Objective: </strong>CD28 is a costimulatory molecule that enhances T-cell activation. It has also been shown to attenuate calcineurin inhibitors. In this study, we compared the CD28-mediated resistance of CD4+ T cells to those calcineurin inhibitors and tried to predict CD28's impact on infectious diseases.</p><p><strong>Methods: </strong>CD4+ T-cell proliferation was induced with anti-CD3 mAb in the presence or absence of anti-CD28 mAb in vitro. CSA or TAC was added at various concentrations, and the half-maximal inhibitory concentration on CD4+ T-cell proliferation was determined. Effects of lipopolysaccharide (LPS) on dendritic cells (DCs) and CD4+ T-cell proliferation were also evaluated in vitro.</p><p><strong>Results: </strong>Anti-CD28 mAb conferred CD4+ T cells with resistance to both CSA and TAC, and CD28's effect on the latter was approximately twice that on the former. LPS induced expression of CD28 ligands CD80/86 on DCs. The addition of LPS to culture containing DCs seemed to make CD4+ T cells slightly resistant to TAC but not to CSA. However, its effect on the former was very weak under our experimental conditions.</p><p><strong>Conclusions: </strong>CD28 attenuated TAC more strongly than CSA. Although LPS did not demonstrate strong enough resistance in our in vitro model, TAC might maintain a better antibacterial immune response than CSA in clinical use.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12932/AP-270820-0949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cyclosporin A (CSA) and tacrolimus (TAC) suppress T-cell activation and subsequent proliferation by inhibiting calcineurin. Though they have the same target, CSA and TAC have quite different molecular structures, indicating quantitative and/or qualitative differences in their effects.
Objective: CD28 is a costimulatory molecule that enhances T-cell activation. It has also been shown to attenuate calcineurin inhibitors. In this study, we compared the CD28-mediated resistance of CD4+ T cells to those calcineurin inhibitors and tried to predict CD28's impact on infectious diseases.
Methods: CD4+ T-cell proliferation was induced with anti-CD3 mAb in the presence or absence of anti-CD28 mAb in vitro. CSA or TAC was added at various concentrations, and the half-maximal inhibitory concentration on CD4+ T-cell proliferation was determined. Effects of lipopolysaccharide (LPS) on dendritic cells (DCs) and CD4+ T-cell proliferation were also evaluated in vitro.
Results: Anti-CD28 mAb conferred CD4+ T cells with resistance to both CSA and TAC, and CD28's effect on the latter was approximately twice that on the former. LPS induced expression of CD28 ligands CD80/86 on DCs. The addition of LPS to culture containing DCs seemed to make CD4+ T cells slightly resistant to TAC but not to CSA. However, its effect on the former was very weak under our experimental conditions.
Conclusions: CD28 attenuated TAC more strongly than CSA. Although LPS did not demonstrate strong enough resistance in our in vitro model, TAC might maintain a better antibacterial immune response than CSA in clinical use.