Carbon monoxide poisoning: a prediction model using meteorological factors and air pollutant.

Q2 Biochemistry, Genetics and Molecular Biology BMC Proceedings Pub Date : 2021-03-02 DOI:10.1186/s12919-021-00206-7
Hai-Lin Ruan, Wang-Shen Deng, Yao Wang, Jian-Bing Chen, Wei-Liang Hong, Shan-Shan Ye, Zhuo-Jun Hu
{"title":"Carbon monoxide poisoning: a prediction model using meteorological factors and air pollutant.","authors":"Hai-Lin Ruan,&nbsp;Wang-Shen Deng,&nbsp;Yao Wang,&nbsp;Jian-Bing Chen,&nbsp;Wei-Liang Hong,&nbsp;Shan-Shan Ye,&nbsp;Zhuo-Jun Hu","doi":"10.1186/s12919-021-00206-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While the influence of meteorology on carbon monoxide (CO) poisoning has been reported, few data are available on the association between air pollutants and the prediction of CO poisoning. Our objective is to explore meteorological and pollutant patterns associated with CO poisoning and to establish a predictive model.</p><p><strong>Results: </strong>CO poisoning was found to be significantly associated with meteorological and pollutant patterns: low temperatures, low wind speeds, low air concentrations of sulfur dioxide (SO<sub>2</sub>) and ozone (O<sub>3</sub>8h), and high daily temperature changes and ambient CO (r absolute value range: 0.079 to 0.232, all P values < 0.01). Based on the above factors, a predictive model was established: \"logitPj = aj - 0.193 * temperature - 0.228 * wind speed + 0.221 * 24 h temperature change + 1.25 * CO - 0.0176 * SO<sub>2</sub> + 0.0008 *O<sub>3</sub>8h; j = 1, 2, 3, 4; a1 = -4.12, a2 = -2.93, a3 = -1.98, a4 = -0.92.\" The proposed prediction model based on combined factors showed better predictive capacity than a model using only meteorological factors as a predictor.</p><p><strong>Conclusion: </strong>Low temperatures, wind speed, and SO<sub>2</sub> and high daily temperature changes, O<sub>3</sub>8h, and CO are related to CO poisoning. Using both meteorological and pollutant factors as predictors could help facilitate the prevention of CO poisoning.</p>","PeriodicalId":9046,"journal":{"name":"BMC Proceedings","volume":"15 Suppl 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12919-021-00206-7","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12919-021-00206-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 3

Abstract

Background: While the influence of meteorology on carbon monoxide (CO) poisoning has been reported, few data are available on the association between air pollutants and the prediction of CO poisoning. Our objective is to explore meteorological and pollutant patterns associated with CO poisoning and to establish a predictive model.

Results: CO poisoning was found to be significantly associated with meteorological and pollutant patterns: low temperatures, low wind speeds, low air concentrations of sulfur dioxide (SO2) and ozone (O38h), and high daily temperature changes and ambient CO (r absolute value range: 0.079 to 0.232, all P values < 0.01). Based on the above factors, a predictive model was established: "logitPj = aj - 0.193 * temperature - 0.228 * wind speed + 0.221 * 24 h temperature change + 1.25 * CO - 0.0176 * SO2 + 0.0008 *O38h; j = 1, 2, 3, 4; a1 = -4.12, a2 = -2.93, a3 = -1.98, a4 = -0.92." The proposed prediction model based on combined factors showed better predictive capacity than a model using only meteorological factors as a predictor.

Conclusion: Low temperatures, wind speed, and SO2 and high daily temperature changes, O38h, and CO are related to CO poisoning. Using both meteorological and pollutant factors as predictors could help facilitate the prevention of CO poisoning.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一氧化碳中毒:利用气象因子和大气污染物的预测模型。
背景:气象对一氧化碳(CO)中毒的影响已有报道,但关于空气污染物与CO中毒预测之间关系的数据很少。我们的目标是探索与一氧化碳中毒有关的气象和污染物模式,并建立一个预测模型。结果:CO中毒与气象和污染物模式显著相关:低温、低风速、低空气中二氧化硫(SO2)和臭氧浓度(O38h)、高日温度变化和环境CO (r绝对值范围为0.079 ~ 0.232,P值均为2 + 0.0008 *O38h;J = 1,2,3,4;A1 = -4.12 a2 = -2.93 a3 = -1.98 a4 = -0.92 "综合因子预测模型的预测能力优于单纯气象因子预测模型。结论:低温、风速、SO2和高日温差、O38h、CO与CO中毒有关。同时使用气象和污染物因子作为预测因子,有助于预防一氧化碳中毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Proceedings
BMC Proceedings Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.50
自引率
0.00%
发文量
6
审稿时长
10 weeks
期刊最新文献
Improving access to services in neuro-developmental disability: proceedings of a national meeting to advance community capacity. Managing conflict styles to accelerate leadership effectiveness. World Health Organization African Region national heads of units of diagnostics and laboratory services meetings proceedings. How to construct and deliver an elevator pitch: a formula for the research scientist. Meeting report of the seventh annual Tri-Service Microbiome Consortium Symposium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1