INFERRING SOCIAL CONTEXTS FROM AUDIO RECORDINGS USING DEEP NEURAL NETWORKS.

Meysam Asgari, Izhak Shafran, Alireza Bayestehtashk
{"title":"INFERRING SOCIAL CONTEXTS FROM AUDIO RECORDINGS USING DEEP NEURAL NETWORKS.","authors":"Meysam Asgari, Izhak Shafran, Alireza Bayestehtashk","doi":"10.1109/MLSP.2014.6958853","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the problem of detecting social contexts from the audio recordings of everyday life such as in life-logs. Unlike the standard corpora of telephone speech or broadcast news, these recordings have a wide variety of background noise. By nature, in such applications, it is difficult to collect and label all the representative noise for learning models in a fully supervised manner. The amount of labeled data that can be expected is relatively small compared to the available recordings. This lends itself naturally to unsupervised feature extraction using sparse auto-encoders, followed by supervised learning of a classifier for social contexts. We investigate different strategies for training these models and report results on a real-world application.</p>","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934587/pdf/nihms-1670823.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2014.6958853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/11/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the problem of detecting social contexts from the audio recordings of everyday life such as in life-logs. Unlike the standard corpora of telephone speech or broadcast news, these recordings have a wide variety of background noise. By nature, in such applications, it is difficult to collect and label all the representative noise for learning models in a fully supervised manner. The amount of labeled data that can be expected is relatively small compared to the available recordings. This lends itself naturally to unsupervised feature extraction using sparse auto-encoders, followed by supervised learning of a classifier for social contexts. We investigate different strategies for training these models and report results on a real-world application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度神经网络从录音中推断社会背景。
在本文中,我们研究了从生活日志等日常生活录音中检测社会背景的问题。与电话语音或广播新闻的标准语料库不同,这些录音有各种各样的背景噪声。从本质上讲,在这类应用中,很难收集和标注所有有代表性的噪声,以便以完全监督的方式学习模型。与可用的录音相比,可以预期的标注数据量相对较小。这就自然而然地需要使用稀疏自动编码器进行无监督特征提取,然后在监督下学习社会环境分类器。我们研究了训练这些模型的不同策略,并报告了实际应用的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS. CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES. LEARNING GENERAL TRANSFORMATIONS OF DATA FOR OUT-OF-SAMPLE EXTENSIONS. Statistical modelling and inference Probabilistic graphical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1