首页 > 最新文献

IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing最新文献

英文 中文
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS. 以数据为驱动学习 gnns 的几何散射模块。
Alexander Tong, Frederick Wenkel, Kincaid Macdonald, Smita Krishnaswamy, Guy Wolf

We propose a new graph neural network (GNN) module, based on relaxations of recently proposed geometric scattering transforms, which consist of a cascade of graph wavelet filters. Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations. The incorporation of our LEGS-module in GNNs enables the learning of longer-range graph relations compared to many popular GNNs, which often rely on encoding graph structure via smoothness or similarity between neighbors. Further, its wavelet priors result in simplified architectures with significantly fewer learned parameters compared to competing GNNs. We demonstrate the predictive performance of LEGS-based networks on graph classification benchmarks, as well as the descriptive quality of their learned features in biochemical graph data exploration tasks.

我们提出了一种新的图神经网络(GNN)模块,它基于最近提出的几何散射变换的松弛,由一串图小波滤波器组成。我们的可学习几何散射(LEGS)模块能对小波进行自适应调整,以鼓励在学习的表征中出现带通特征。与许多流行的 GNN 相比,在 GNN 中加入我们的 LEGS 模块能够学习更长距离的图关系,后者通常依赖于通过平滑度或邻域之间的相似性对图结构进行编码。此外,与同类 GNN 相比,其小波前验可简化架构,大大减少学习参数。我们展示了基于 LEGS 的网络在图分类基准上的预测性能,以及在生化图数据探索任务中学习到的特征的描述质量。
{"title":"DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS.","authors":"Alexander Tong, Frederick Wenkel, Kincaid Macdonald, Smita Krishnaswamy, Guy Wolf","doi":"10.1109/mlsp52302.2021.9596169","DOIUrl":"10.1109/mlsp52302.2021.9596169","url":null,"abstract":"<p><p>We propose a new graph neural network (GNN) module, based on relaxations of recently proposed geometric scattering transforms, which consist of a cascade of graph wavelet filters. Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations. The incorporation of our LEGS-module in GNNs enables the learning of longer-range graph relations compared to many popular GNNs, which often rely on encoding graph structure via smoothness or similarity between neighbors. Further, its wavelet priors result in simplified architectures with significantly fewer learned parameters compared to competing GNNs. We demonstrate the predictive performance of LEGS-based networks on graph classification benchmarks, as well as the descriptive quality of their learned features in biochemical graph data exploration tasks.</p>","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"2021 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026018/pdf/nihms-1829559.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9192207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LEARNING GENERAL TRANSFORMATIONS OF DATA FOR OUT-OF-SAMPLE EXTENSIONS. 学习样本外扩展的一般数据转换。
Matthew Amodio, David van Dijk, Guy Wolf, Smita Krishnaswamy

While generative models such as GANs have been successful at mapping from noise to specific distributions of data, or more generally from one distribution of data to another, they cannot isolate the transformation that is occurring and apply it to a new distribution not seen in training. Thus, they memorize the domain of the transformation, and cannot generalize the transformation out of sample. To address this, we propose a new neural network called a Neuron Transformation Network (NTNet) that isolates the signal representing the transformation itself from the other signals representing internal distribution variation. This signal can then be removed from a new dataset distributed differently from the original one trained on. We demonstrate the effectiveness of our NTNet on more than a dozen synthetic and biomedical single-cell RNA sequencing datasets, where the NTNet is able to learn the data transformation performed by genetic and drug perturbations on one sample of cells and successfully apply it to another sample of cells to predict treatment outcome.

虽然像gan这样的生成模型已经成功地从噪声映射到特定的数据分布,或者更普遍地从一种数据分布映射到另一种数据分布,但它们不能隔离正在发生的转换,并将其应用于训练中未见的新分布。因此,它们记住了变换的定义域,而不能将变换推广到样本外。为了解决这个问题,我们提出了一种新的神经网络,称为神经元变换网络(NTNet),它将表示变换本身的信号与表示内部分布变化的其他信号隔离开来。然后,这个信号可以从一个分布与原始训练数据不同的新数据集中移除。我们在十多个合成和生物医学单细胞RNA测序数据集上展示了我们的NTNet的有效性,其中NTNet能够学习由遗传和药物扰动对一个细胞样本进行的数据转换,并成功地将其应用于另一个细胞样本以预测治疗结果。
{"title":"LEARNING GENERAL TRANSFORMATIONS OF DATA FOR OUT-OF-SAMPLE EXTENSIONS.","authors":"Matthew Amodio,&nbsp;David van Dijk,&nbsp;Guy Wolf,&nbsp;Smita Krishnaswamy","doi":"10.1109/mlsp49062.2020.9231660","DOIUrl":"https://doi.org/10.1109/mlsp49062.2020.9231660","url":null,"abstract":"<p><p>While generative models such as GANs have been successful at mapping from noise to specific distributions of data, or more generally from one distribution of data to another, they cannot isolate the transformation that is occurring and apply it to a new distribution not seen in training. Thus, they memorize the domain of the transformation, and cannot generalize the transformation <i>out of sample</i>. To address this, we propose a new neural network called a <i>Neuron Transformation Network</i> (NTNet) that isolates the signal representing the transformation itself from the other signals representing internal distribution variation. This signal can then be removed from a new dataset distributed differently from the original one trained on. We demonstrate the effectiveness of our NTNet on more than a dozen synthetic and biomedical single-cell RNA sequencing datasets, where the NTNet is able to learn the data transformation performed by genetic and drug perturbations on one sample of cells and successfully apply it to another sample of cells to predict treatment outcome.</p>","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"2020 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/mlsp49062.2020.9231660","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39446576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES. 基于卷积递归神经网络的双传声器听觉到达方向估计方法研究。
Abdullah Küçük, Issa M S Panahi

This work proposes a convolutional recurrent neural network (CRNN) based direction of arrival (DOA) angle estimation method, implemented on the Android smartphone for hearing aid applications. The proposed app provides a 'visual' indication of the direction of a talker on the screen of Android smartphones for improving the hearing of people with hearing disorders. We use real and imaginary parts of short-time Fourier transform (STFT) as a feature set for the proposed CRNN architecture for DOA angle estimation. Real smartphone recordings are utilized for assessing performance of the proposed method. The accuracy of the proposed method reaches 87.33% for unseen (untrained) environments. This work also presents real-time inference of the proposed method, which is done on an Android smartphone using only its two built-in microphones and no additional component or external hardware. The real-time implementation also proves the generalization and robustness of the proposed CRNN based model.

本文提出了一种基于卷积递归神经网络(CRNN)的到达方向(DOA)角度估计方法,并在助听器应用的Android智能手机上实现。这款应用程序可以在安卓智能手机的屏幕上为说话者提供“视觉”指示,以改善听力障碍患者的听力。我们使用短时傅里叶变换(STFT)的实部和虚部作为所提出的CRNN体系结构的特征集,用于DOA角度估计。真实的智能手机录音被用于评估所提出的方法的性能。对于未见过的(未经训练的)环境,该方法的准确率达到87.33%。这项工作还提出了所提出方法的实时推断,该方法在Android智能手机上完成,仅使用其两个内置麦克风,没有额外的组件或外部硬件。实时性验证了该模型的泛化性和鲁棒性。
{"title":"CONVOLUTIONAL RECURRENT NEURAL NETWORK BASED DIRECTION OF ARRIVAL ESTIMATION METHOD USING TWO MICROPHONES FOR HEARING STUDIES.","authors":"Abdullah Küçük,&nbsp;Issa M S Panahi","doi":"10.1109/mlsp49062.2020.9231693","DOIUrl":"https://doi.org/10.1109/mlsp49062.2020.9231693","url":null,"abstract":"<p><p>This work proposes a convolutional recurrent neural network (CRNN) based direction of arrival (DOA) angle estimation method, implemented on the Android smartphone for hearing aid applications. The proposed app provides a 'visual' indication of the direction of a talker on the screen of Android smartphones for improving the hearing of people with hearing disorders. We use real and imaginary parts of short-time Fourier transform (STFT) as a feature set for the proposed CRNN architecture for DOA angle estimation. Real smartphone recordings are utilized for assessing performance of the proposed method. The accuracy of the proposed method reaches 87.33% for unseen (untrained) environments. This work also presents real-time inference of the proposed method, which is done on an Android smartphone using only its two built-in microphones and no additional component or external hardware. The real-time implementation also proves the generalization and robustness of the proposed CRNN based model.</p>","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"2020 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/mlsp49062.2020.9231693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38969232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nonlinear and non-Gaussian signal processing 非线性和非高斯信号处理
Max A. Little
Linear, time-invariant (LTI) Gaussian DSP, has substantial mathematical conveniences that make it valuable in practical DSP applications and machine learning. When the signal really is generated by such an LTI-Gaussian model then this kind of processing is optimal from a statistical point of view. However, there are substantial limitations to the use of these techniques when we cannot guarantee that the assumptions of linearity, time-invariance and Gaussianity hold. In particular, signals that exhibit jumps or significant non-Gaussian outliers cause substantial adverse effects such as Gibb's phenomena in LTI filter outputs, and nonstationary signals cannot be compactly represented in the Fourier domain. In practice, many real signals show such phenomena to a greater or lesser degree, so it is important to have a `toolkit' of DSP methods that are effective in many situations. This chapter is dedicated to exploring the use of the statistical machine learning concepts in DSP.
线性,时不变(LTI)高斯DSP具有大量的数学便利性,使其在实际DSP应用和机器学习中具有价值。当信号真的是由这样一个lti -高斯模型产生时,从统计的角度来看,这种处理是最优的。然而,当我们不能保证线性、时不变和高斯性的假设成立时,这些技术的使用有很大的局限性。特别是,表现出跳跃或显著的非高斯异常值的信号会导致严重的不利影响,例如LTI滤波器输出中的Gibb现象,并且非平稳信号不能在傅里叶域中紧凑地表示。在实践中,许多真实信号或多或少地显示出这种现象,因此拥有在许多情况下有效的DSP方法“工具包”非常重要。本章致力于探索统计机器学习概念在DSP中的应用。
{"title":"Nonlinear and non-Gaussian signal processing","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0009","DOIUrl":"https://doi.org/10.1093/oso/9780198714934.003.0009","url":null,"abstract":"Linear, time-invariant (LTI) Gaussian DSP, has substantial mathematical conveniences that make it valuable in practical DSP applications and machine learning. When the signal really is generated by such an LTI-Gaussian model then this kind of processing is optimal from a statistical point of view. However, there are substantial limitations to the use of these techniques when we cannot guarantee that the assumptions of linearity, time-invariance and Gaussianity hold. In particular, signals that exhibit jumps or significant non-Gaussian outliers cause substantial adverse effects such as Gibb's phenomena in LTI filter outputs, and nonstationary signals cannot be compactly represented in the Fourier domain. In practice, many real signals show such phenomena to a greater or lesser degree, so it is important to have a `toolkit' of DSP methods that are effective in many situations. This chapter is dedicated to exploring the use of the statistical machine learning concepts in DSP.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78242413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical modelling and inference 统计建模与推理
Max A. Little
The modern view of statistical machine learning and signal processing is that the central task is one of finding good probabilistic models for the joint distribution over all the variables in the problem. We can then make `queries' of this model, also known as inferences, to determine optimal parameter values or signals. Hence, the importance of statistical methods to this book cannot be overstated. This chapter is an in-depth exploration of what this probabilistic modeling entails, the origins of the concepts involved, how to perform inferences and how to test the quality of a model produced this way.
统计机器学习和信号处理的现代观点是,中心任务是为问题中所有变量的联合分布找到一个好的概率模型。然后,我们可以对该模型进行“查询”,也称为推理,以确定最佳参数值或信号。因此,统计方法对本书的重要性怎么强调也不为过。本章深入探讨了这种概率建模需要什么,所涉及的概念的起源,如何执行推理以及如何测试以这种方式产生的模型的质量。
{"title":"Statistical modelling and inference","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0004","DOIUrl":"https://doi.org/10.1093/oso/9780198714934.003.0004","url":null,"abstract":"The modern view of statistical machine learning and signal processing is that the central task is one of finding good probabilistic models for the joint distribution over all the variables in the problem. We can then make `queries' of this model, also known as inferences, to determine optimal parameter values or signals. Hence, the importance of statistical methods to this book cannot be overstated. This chapter is an in-depth exploration of what this probabilistic modeling entails, the origins of the concepts involved, how to perform inferences and how to test the quality of a model produced this way.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72739115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic graphical models 概率图形模型
Max A. Little
Statistical machine learning and statistical DSP are built on the foundations of probability theory and random variables. Different techniques encode different dependency structure between these variables. This structure leads to specific algorithms for inference and estimation. Many common dependency structures emerge naturally in this way, as a result, there are many common patterns of inference and estimation that suggest general algorithms for this purpose. So, it becomes important to formalize these algorithms; this is the purpose of this chapter. These general algorithms can often lead to substantial computational savings over more brute-force approaches, another benefit that comes from studying the structure of these models in the abstract.
统计机器学习和统计DSP是建立在概率论和随机变量的基础上的。不同的技术在这些变量之间编码不同的依赖结构。这种结构导致了用于推理和估计的特定算法。许多常见的依赖关系结构以这种方式自然出现,因此,有许多常见的推理和估计模式建议用于此目的的通用算法。因此,形式化这些算法变得很重要;这就是本章的目的。这些通用算法通常可以比更暴力的方法节省大量的计算量,这是抽象地研究这些模型结构的另一个好处。
{"title":"Probabilistic graphical models","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0005","DOIUrl":"https://doi.org/10.1093/oso/9780198714934.003.0005","url":null,"abstract":"Statistical machine learning and statistical DSP are built on the foundations of probability theory and random variables. Different techniques encode different dependency structure between these variables. This structure leads to specific algorithms for inference and estimation. Many common dependency structures emerge naturally in this way, as a result, there are many common patterns of inference and estimation that suggest general algorithms for this purpose. So, it becomes important to formalize these algorithms; this is the purpose of this chapter. These general algorithms can often lead to substantial computational savings over more brute-force approaches, another benefit that comes from studying the structure of these models in the abstract.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74696737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric Bayesian machine learning and signal processing 非参数贝叶斯机器学习与信号处理
Max A. Little
We have seen that stochastic processes play an important foundational role in a wide range of methods in DSP. For example, we treat a discrete-time signal as a Gaussian process, and thereby obtain many mathematically simplified algorithms, particularly based on the power spectral density. At the same time, in machine learning, it has generally been observed that nonparametric methods outperform parametric methods in terms of predictive accuracy since they can adapt to data with arbitrary complexity. However, these techniques are not Bayesian so we are unable to do important inferential procedures such as draw samples from the underlying probabilistic model or compute posterior confidence intervals. But, Bayesian models are often only mathematically tractable if parametric, with the corresponding loss of predictive accuracy. An alternative, discussed in this section, is to extend the mathematical tractability of stochastic processes to Bayesian methods. This leads to so-called Bayesian nonparametrics exemplified by techniques such as Gaussian process regression and Dirichlet process mixture modelling that have been shown to be extremely useful in practical DSP and machine learning applications.
我们已经看到,随机过程在DSP的各种方法中起着重要的基础作用。例如,我们将离散时间信号视为高斯过程,从而获得许多数学上简化的算法,特别是基于功率谱密度的算法。同时,在机器学习中,人们普遍认为非参数方法在预测精度方面优于参数方法,因为它们可以适应任意复杂性的数据。然而,这些技术不是贝叶斯的,所以我们不能做重要的推理程序,比如从潜在的概率模型中提取样本或计算后验置信区间。但是,贝叶斯模型通常只有在参数化的情况下才具有数学上的可处理性,从而导致预测精度的相应损失。本节讨论的另一种方法是将随机过程的数学可追溯性扩展到贝叶斯方法。这导致了所谓的贝叶斯非参数,例如高斯过程回归和狄利克雷过程混合建模,这些技术已被证明在实际的DSP和机器学习应用中非常有用。
{"title":"Nonparametric Bayesian machine learning and signal processing","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0010","DOIUrl":"https://doi.org/10.1093/oso/9780198714934.003.0010","url":null,"abstract":"We have seen that stochastic processes play an important foundational role in a wide range of methods in DSP. For example, we treat a discrete-time signal as a Gaussian process, and thereby obtain many mathematically simplified algorithms, particularly based on the power spectral density. At the same time, in machine learning, it has generally been observed that nonparametric methods outperform parametric methods in terms of predictive accuracy since they can adapt to data with arbitrary complexity. However, these techniques are not Bayesian so we are unable to do important inferential procedures such as draw samples from the underlying probabilistic model or compute posterior confidence intervals. But, Bayesian models are often only mathematically tractable if parametric, with the corresponding loss of predictive accuracy. An alternative, discussed in this section, is to extend the mathematical tractability of stochastic processes to Bayesian methods. This leads to so-called Bayesian nonparametrics exemplified by techniques such as Gaussian process regression and Dirichlet process mixture modelling that have been shown to be extremely useful in practical DSP and machine learning applications.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80427209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical foundations 数学基础
Max A. Little
Statistical machine learning and signal processing are topics in applied mathematics, which are based upon many abstract mathematical concepts. Defining these concepts clearly is the most important first step in this book. The purpose of this chapter is to introduce these foundational mathematical concepts. It also justifies the statement that much of the art of statistical machine learning as applied to signal processing, lies in the choice of convenient mathematical models that happen to be useful in practice. Convenient in this context means that the algebraic consequences of the choice of mathematical modeling assumptions are in some sense manageable. The seeds of this manageability are the elementary mathematical concepts upon which the subject is built.
统计机器学习和信号处理是应用数学中的主题,它们基于许多抽象的数学概念。清晰地定义这些概念是本书最重要的第一步。本章的目的是介绍这些基本的数学概念。这也证明了这样一种说法是正确的,即统计机器学习的艺术在很大程度上应用于信号处理,在于选择在实践中碰巧有用的方便数学模型。在这种情况下,方便意味着选择数学建模假设的代数结果在某种意义上是可管理的。这种可管理性的种子是本学科赖以建立的基本数学概念。
{"title":"Mathematical foundations","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0001","DOIUrl":"https://doi.org/10.1093/oso/9780198714934.003.0001","url":null,"abstract":"Statistical machine learning and signal processing are topics in applied mathematics, which are based upon many abstract mathematical concepts. Defining these concepts clearly is the most important first step in this book. The purpose of this chapter is to introduce these foundational mathematical concepts. It also justifies the statement that much of the art of statistical machine learning as applied to signal processing, lies in the choice of convenient mathematical models that happen to be useful in practice. Convenient in this context means that the algebraic consequences of the choice of mathematical modeling assumptions are in some sense manageable. The seeds of this manageability are the elementary mathematical concepts upon which the subject is built.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87510695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear-Gaussian systems and signal processing 线性-高斯系统与信号处理
Max A. Little
Linear systems theory, based on the mathematics of vector spaces, is the backbone of all “classical” DSP and a large part of statistical machine learning. The basic idea -- that linear algebra applied to a signal can of substantial practical value -- has counterparts in many areas of science and technology. In other areas of science and engineering, linear algebra is often justified by the fact that it is often an excellent model for real-world systems. For example, in acoustics the theory of (linear) wave propagation emerges from the concept of linearization of small pressure disturbances about the equilibrium pressure in classical fluid dynamics. Similarly, the theory of electromagnetic waves is also linear. Except when a signal emerges from a justifiably linear system, in DSP and machine learning we do not have any particular correspondence to reality to back up the choice of linearity. However, the mathematics of vector spaces, particularly when applied to systems which are time-invariant and jointly Gaussian, is highly tractable, elegant and immensely useful.
基于向量空间数学的线性系统理论是所有“经典”DSP的支柱,也是统计机器学习的很大一部分。将线性代数应用于信号具有重要的实用价值,这一基本思想在许多科学技术领域都有相应的应用。在科学和工程的其他领域,线性代数通常被证明是现实世界系统的优秀模型。例如,在声学中,(线性)波传播理论是由经典流体动力学中关于平衡压力的小压力扰动的线性化概念产生的。同样,电磁波的理论也是线性的。除非信号来自合理的线性系统,在DSP和机器学习中,我们没有任何与现实的特定对应关系来支持线性的选择。然而,向量空间的数学,特别是当应用于时不变和联合高斯的系统时,是非常容易处理的,优雅的和非常有用的。
{"title":"Linear-Gaussian systems and signal processing","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0007","DOIUrl":"https://doi.org/10.1093/oso/9780198714934.003.0007","url":null,"abstract":"Linear systems theory, based on the mathematics of vector spaces, is the backbone of all “classical” DSP and a large part of statistical machine learning. The basic idea -- that linear algebra applied to a signal can of substantial practical value -- has counterparts in many areas of science and technology. In other areas of science and engineering, linear algebra is often justified by the fact that it is often an excellent model for real-world systems. For example, in acoustics the theory of (linear) wave propagation emerges from the concept of linearization of small pressure disturbances about the equilibrium pressure in classical fluid dynamics. Similarly, the theory of electromagnetic waves is also linear. Except when a signal emerges from a justifiably linear system, in DSP and machine learning we do not have any particular correspondence to reality to back up the choice of linearity. However, the mathematics of vector spaces, particularly when applied to systems which are time-invariant and jointly Gaussian, is highly tractable, elegant and immensely useful.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82901056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete signals: sampling, quantization and coding 离散信号:采样、量化和编码
Max A. Little
Digital signal processing and machine learning require digital data which can be processed by algorithms on computer. However, most of the real-world signals that we observe are real numbers, occurring at real time values. This means that it is impossible in practice to store these signals on a computer and we must find some approximate signal representation which is amenable to finite, digital storage. This chapter describes the main methods which are used in practice to solve this representation problem.
数字信号处理和机器学习需要数字数据,这些数据可以在计算机上通过算法进行处理。然而,我们观察到的大多数现实世界信号都是实数,以实时值出现。这意味着在实际中不可能将这些信号存储在计算机上,我们必须找到一些近似的信号表示,以适应有限的数字存储。本章描述了在实践中用来解决这个表示问题的主要方法。
{"title":"Discrete signals: sampling, quantization and coding","authors":"Max A. Little","doi":"10.1093/oso/9780198714934.003.0008","DOIUrl":"https://doi.org/10.1093/oso/9780198714934.003.0008","url":null,"abstract":"Digital signal processing and machine learning require digital data which can be processed by algorithms on computer. However, most of the real-world signals that we observe are real numbers, occurring at real time values. This means that it is impossible in practice to store these signals on a computer and we must find some approximate signal representation which is amenable to finite, digital storage. This chapter describes the main methods which are used in practice to solve this representation problem.","PeriodicalId":73290,"journal":{"name":"IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78781535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE International Workshop on Machine Learning for Signal Processing : [proceedings]. IEEE International Workshop on Machine Learning for Signal Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1