Circular RNA-MicroRNA-MRNA interaction predictions in SARS-CoV-2 infection.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2021-03-17 DOI:10.1515/jib-2020-0047
Yılmaz Mehmet Demirci, Müşerref Duygu Saçar Demirci
{"title":"Circular RNA-MicroRNA-MRNA interaction predictions in SARS-CoV-2 infection.","authors":"Yılmaz Mehmet Demirci, Müşerref Duygu Saçar Demirci","doi":"10.1515/jib-2020-0047","DOIUrl":null,"url":null,"abstract":"<p><p>Different types of noncoding RNAs like microRNAs (miRNAs) and circular RNAs (circRNAs) have been shown to take part in various cellular processes including post-transcriptional gene regulation during infection. MiRNAs are expressed by more than 200 organisms ranging from viruses to higher eukaryotes. Since miRNAs seem to be involved in host-pathogen interactions, many studies attempted to identify whether human miRNAs could target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNAs as an antiviral defence mechanism. In this work, a machine learning based miRNA analysis workflow was developed to predict differential expression patterns of human miRNAs during SARS-CoV-2 infection. In order to obtain the graphical representation of miRNA hairpins, 36 features were defined based on the secondary structures. Moreover, potential targeting interactions between human circRNAs and miRNAs as well as human miRNAs and viral mRNAs were investigated.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jib-2020-0047","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2020-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 17

Abstract

Different types of noncoding RNAs like microRNAs (miRNAs) and circular RNAs (circRNAs) have been shown to take part in various cellular processes including post-transcriptional gene regulation during infection. MiRNAs are expressed by more than 200 organisms ranging from viruses to higher eukaryotes. Since miRNAs seem to be involved in host-pathogen interactions, many studies attempted to identify whether human miRNAs could target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNAs as an antiviral defence mechanism. In this work, a machine learning based miRNA analysis workflow was developed to predict differential expression patterns of human miRNAs during SARS-CoV-2 infection. In order to obtain the graphical representation of miRNA hairpins, 36 features were defined based on the secondary structures. Moreover, potential targeting interactions between human circRNAs and miRNAs as well as human miRNAs and viral mRNAs were investigated.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环状RNA-MicroRNA-MRNA相互作用预测SARS-CoV-2感染。
不同类型的非编码rna,如microRNAs (miRNAs)和环状rna (circRNAs),已被证明在感染期间参与各种细胞过程,包括转录后基因调控。从病毒到高等真核生物,有200多种生物表达mirna。由于miRNAs似乎参与了宿主-病原体的相互作用,许多研究试图确定人类miRNAs是否可以靶向严重急性呼吸综合征冠状病毒2 (SARS-CoV-2) mrna作为抗病毒防御机制。在这项工作中,开发了一种基于机器学习的miRNA分析工作流程,以预测SARS-CoV-2感染期间人类miRNA的差异表达模式。为了获得miRNA发夹的图形化表示,我们根据二级结构定义了36个特征。此外,还研究了人类circRNAs与miRNAs以及人类miRNAs与病毒mrna之间潜在的靶向相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
A roadmap for a middleware as a federation service for integrative data retrieval of agricultural data. International symposium on integrative bioinformatics 2024 - editorial. The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease prevention. MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. Leonhard Med, a trusted research environment for processing sensitive research data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1