{"title":"miR-22-3p/PGC1<i>β</i> Suppresses Breast Cancer Cell Tumorigenesis via PPAR<i>γ</i>.","authors":"Xuehui Wang, Zhilu Yao, Lin Fang","doi":"10.1155/2021/6661828","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we found that miR-22-3p expression was decreased in breast cancer (BC) cell lines and tissues. Overexpression of miR-22-3p inhibited the proliferation and migration of BC cells in vitro and in vivo, while depletion of miR-22-3p exhibited the opposite effect. Importantly, miR-22-3p could directly target PGC1<i>β</i> and finally regulate the PPAR<i>γ</i> pathway in BC. In conclusion, miR-22-3p/PGC1<i>β</i> suppresses BC cell tumorigenesis via PPAR<i>γ</i>, which may become a potential biomarker and therapeutic target.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981180/pdf/","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PPAR Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2021/6661828","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 16
Abstract
In this study, we found that miR-22-3p expression was decreased in breast cancer (BC) cell lines and tissues. Overexpression of miR-22-3p inhibited the proliferation and migration of BC cells in vitro and in vivo, while depletion of miR-22-3p exhibited the opposite effect. Importantly, miR-22-3p could directly target PGC1β and finally regulate the PPARγ pathway in BC. In conclusion, miR-22-3p/PGC1β suppresses BC cell tumorigenesis via PPARγ, which may become a potential biomarker and therapeutic target.
期刊介绍:
PPAR Research is a peer-reviewed, Open Access journal that publishes original research and review articles on advances in basic research focusing on mechanisms involved in the activation of peroxisome proliferator-activated receptors (PPARs), as well as their role in the regulation of cellular differentiation, development, energy homeostasis and metabolic function. The journal also welcomes preclinical and clinical trials of drugs that can modulate PPAR activity, with a view to treating chronic diseases and disorders such as dyslipidemia, diabetes, adipocyte differentiation, inflammation, cancer, lung diseases, neurodegenerative disorders, and obesity.