Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots.

Utku Culha, Sinan O Demir, Sebastian Trimpe, Metin Sitti
{"title":"Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots.","authors":"Utku Culha,&nbsp;Sinan O Demir,&nbsp;Sebastian Trimpe,&nbsp;Metin Sitti","doi":"10.15607/RSS.2020.XVI.070","DOIUrl":null,"url":null,"abstract":"<p><p>Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can access confined spaces in the human body. However, due to highly nonlinear soft continuum deformation kinematics, inherent stochastic variability during fabrication at the small scale, and lack of accurate models, the conventional control methods cannot be easily applied. Adaptivity of robot control is additionally crucial for medical operations, as operation environments show large variability, and robot materials may degrade or change over time, which would have deteriorating effects on the robot motion and task performance. Therefore, we propose using a probabilistic learning approach for millimeter-scale magnetic walking soft robots using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme to find controller parameters while optimizing the stride length performance of the walking soft millirobot robot within a small number of physical experiments. We demonstrate adaptation to fabrication variabilities in three different robots and to walking surfaces with different roughness. We also show an improvement in the learning performance by transferring the learning results of one robot to the others as prior information.</p>","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610446/pdf/EMS104319.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2020.XVI.070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can access confined spaces in the human body. However, due to highly nonlinear soft continuum deformation kinematics, inherent stochastic variability during fabrication at the small scale, and lack of accurate models, the conventional control methods cannot be easily applied. Adaptivity of robot control is additionally crucial for medical operations, as operation environments show large variability, and robot materials may degrade or change over time, which would have deteriorating effects on the robot motion and task performance. Therefore, we propose using a probabilistic learning approach for millimeter-scale magnetic walking soft robots using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme to find controller parameters while optimizing the stride length performance of the walking soft millirobot robot within a small number of physical experiments. We demonstrate adaptation to fabrication variabilities in three different robots and to walking surfaces with different roughness. We also show an improvement in the learning performance by transferring the learning results of one robot to the others as prior information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁行走软机器人次优步态控制器的学习。
不受束缚的小型软体机器人在微创手术、靶向药物输送和生物工程应用方面有很好的应用前景,因为它们可以进入人体的狭窄空间。然而,由于软连续体变形运动学的高度非线性、小尺度制造过程中固有的随机变异性以及缺乏精确的模型,传统的控制方法难以应用。机器人控制的适应性对于医疗手术来说也至关重要,因为手术环境具有很大的可变性,机器人材料可能会随着时间的推移而退化或改变,这将对机器人的运动和任务性能产生日益恶化的影响。因此,我们提出了一种基于贝叶斯优化(BO)和高斯过程(GPs)的毫米级磁性步行软机器人概率学习方法。我们的方法提供了一种数据高效的学习方案,可以在少量物理实验中找到控制器参数,同时优化步行软微机器人的步长性能。我们演示了对三种不同机器人的制造变化和不同粗糙度的行走表面的适应。通过将一个机器人的学习结果作为先验信息传递给其他机器人,我们也展示了学习性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1