A Blockwise Consistency Method for Parameter Estimation of Complex Models.

Sankhya. Series B. [Methodological.] Pub Date : 2018-12-01 Epub Date: 2019-02-07 DOI:10.1007/s13571-018-0183-0
Runmin Shi, Faming Liang, Qifan Song, Ye Luo, Malay Ghosh
{"title":"A Blockwise Consistency Method for Parameter Estimation of Complex Models.","authors":"Runmin Shi, Faming Liang, Qifan Song, Ye Luo, Malay Ghosh","doi":"10.1007/s13571-018-0183-0","DOIUrl":null,"url":null,"abstract":"<p><p>The drastic improvement in data collection and acquisition technologies has enabled scientists to collect a great amount of data. With the growing dataset size, typically comes a growing complexity of data structures and of complex models to account for the data structures. How to estimate the parameters of complex models has put a great challenge on current statistical methods. This paper proposes a <i>blockwise consistency</i> approach as a potential solution to the problem, which works by iteratively finding consistent estimates for each block of parameters conditional on the current estimates of the parameters in other blocks. The blockwise consistency approach decomposes the high-dimensional parameter estimation problem into a series of lower-dimensional parameter estimation problems, which often have much simpler structures than the original problem and thus can be easily solved. Moreover, under the framework provided by the blockwise consistency approach, a variety of methods, such as Bayesian and frequentist methods, can be jointly used to achieve a consistent estimator for the original high-dimensional complex model. The blockwise consistency approach is illustrated using two high-dimensional problems, variable selection and multivariate regression. The results of both problems show that the blockwise consistency approach can provide drastic improvements over the existing methods. Extension of the blockwise consistency approach to many other complex models is straightforward.</p>","PeriodicalId":85487,"journal":{"name":"Sankhya. Series B. [Methodological.]","volume":"80 1 Suppl","pages":"179-223"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026010/pdf/nihms-996656.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sankhya. Series B. [Methodological.]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13571-018-0183-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The drastic improvement in data collection and acquisition technologies has enabled scientists to collect a great amount of data. With the growing dataset size, typically comes a growing complexity of data structures and of complex models to account for the data structures. How to estimate the parameters of complex models has put a great challenge on current statistical methods. This paper proposes a blockwise consistency approach as a potential solution to the problem, which works by iteratively finding consistent estimates for each block of parameters conditional on the current estimates of the parameters in other blocks. The blockwise consistency approach decomposes the high-dimensional parameter estimation problem into a series of lower-dimensional parameter estimation problems, which often have much simpler structures than the original problem and thus can be easily solved. Moreover, under the framework provided by the blockwise consistency approach, a variety of methods, such as Bayesian and frequentist methods, can be jointly used to achieve a consistent estimator for the original high-dimensional complex model. The blockwise consistency approach is illustrated using two high-dimensional problems, variable selection and multivariate regression. The results of both problems show that the blockwise consistency approach can provide drastic improvements over the existing methods. Extension of the blockwise consistency approach to many other complex models is straightforward.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂模型参数估计的顺时针一致性方法
数据收集和获取技术的巨大进步使科学家们能够收集大量数据。随着数据集规模的不断扩大,数据结构和用于解释数据结构的复杂模型的复杂性也在不断增加。如何估算复杂模型的参数是对现有统计方法的巨大挑战。本文提出的分块一致性方法是解决这一问题的潜在方案,它的工作原理是以其他分块参数的当前估计值为条件,迭代地为每块参数找到一致的估计值。顺时针一致性方法将高维参数估计问题分解为一系列低维参数估计问题,这些问题的结构往往比原始问题简单得多,因此很容易求解。此外,在顺时针一致性方法提供的框架下,可以联合使用多种方法,如贝叶斯方法和频繁主义方法,以实现对原始高维复杂模型的一致性估计。我们用变量选择和多元回归这两个高维问题来说明顺时针一致性方法。这两个问题的结果表明,与现有方法相比,顺时针一致性方法能带来显著的改进。将顺时针一致性方法扩展到许多其他复杂模型也很简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mediation Analysis using Semi-parametric Shape-Restricted Regression with Applications. A Blockwise Consistency Method for Parameter Estimation of Complex Models. NONPARAMETRIC BENCHMARK ANALYSIS IN RISK ASSESSMENT: A COMPARATIVE STUDY BY SIMULATION AND DATA ANALYSIS. What's So Special About Semiparametric Methods? Rejoinder on Discussion of: What's So Special About Semiparametric Methods?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1