Recent Developments in Solvent-Based Fluid Separations.

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED Annual review of chemical and biomolecular engineering Pub Date : 2021-06-07 Epub Date: 2021-04-14 DOI:10.1146/annurev-chembioeng-102620-015346
Boelo Schuur, Thomas Brouwer, Lisette M J Sprakel
{"title":"Recent Developments in Solvent-Based Fluid Separations.","authors":"Boelo Schuur,&nbsp;Thomas Brouwer,&nbsp;Lisette M J Sprakel","doi":"10.1146/annurev-chembioeng-102620-015346","DOIUrl":null,"url":null,"abstract":"<p><p>The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO<sub>2</sub>-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-102620-015346","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO2-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶剂型流体分离的最新进展。
综述了溶剂型流体分离(涉及至少一种流体相的分离)中最重要的进展。在简要介绍和讨论了溶剂在所有应用领域中观察到的一般趋势之后,讨论了几个具体领域。重要的溶剂发展趋势包括离子液体和深度共晶溶剂取代传统的分子溶剂,以及最近在一些应用领域中对生物基溶剂的讨论越来越多。此外,还讨论了刺激响应系统;该领域最重要的发展是二氧化碳转换和氧化还原反应溶剂。讨论的应用领域包括碳氢化合物分离、碳捕获、生物炼制和金属分离。除了碳氢化合物的分离之外,最近报道的电化学介导的分离似乎提供了令人兴奋的新机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
期刊最新文献
Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Models for Decarbonization in the Chemical Industry. Introduction. Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids. Fluid Ejections in Nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1