The newest TRP channelopathy: Gain of function TRPM3 mutations cause epilepsy and intellectual disability.

Siyuan Zhao, Tibor Rohacs
{"title":"The newest TRP channelopathy: Gain of function TRPM3 mutations cause epilepsy and intellectual disability.","authors":"Siyuan Zhao, Tibor Rohacs","doi":"10.1080/19336950.2021.1908781","DOIUrl":null,"url":null,"abstract":"<p><p>Transient Receptor Potential Melastatin 3 (TRPM3) is a Ca<sup>2+</sup> permeable nonselective cation channel, activated by heat and chemical agonists, such as the endogenous neuro-steroid Pregnenolone Sulfate (PregS) and the chemical compound CIM0216. TRPM3 is expressed in peripheral sensory neurons of the dorsal root ganglia (DRG), and its role in noxious heat sensation in mice is well established. TRPM3 is also expressed in a number of other tissues, including the brain, but its role there has been largely unexplored. Recent reports showed that two mutations in TRPM3 are associated with a developmental and epileptic encephalopathy, pointing to an important role of TRPM3 in the human brain. Subsequent reports found that the two disease-associated mutations increased basal channel activity, and sensitivity of the channel to activation by heat and chemical agonists. This review will discuss these mutations in the context of human diseases caused by mutations in other TRP channels, and in the context of the biophysical properties and physiological functions of TRPM3.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":" ","pages":"386-397"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2021.1908781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transient Receptor Potential Melastatin 3 (TRPM3) is a Ca2+ permeable nonselective cation channel, activated by heat and chemical agonists, such as the endogenous neuro-steroid Pregnenolone Sulfate (PregS) and the chemical compound CIM0216. TRPM3 is expressed in peripheral sensory neurons of the dorsal root ganglia (DRG), and its role in noxious heat sensation in mice is well established. TRPM3 is also expressed in a number of other tissues, including the brain, but its role there has been largely unexplored. Recent reports showed that two mutations in TRPM3 are associated with a developmental and epileptic encephalopathy, pointing to an important role of TRPM3 in the human brain. Subsequent reports found that the two disease-associated mutations increased basal channel activity, and sensitivity of the channel to activation by heat and chemical agonists. This review will discuss these mutations in the context of human diseases caused by mutations in other TRP channels, and in the context of the biophysical properties and physiological functions of TRPM3.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最新的TRP通道病:TRPM3 功能增益突变导致癫痫和智力障碍。
瞬时受体电位美拉德3(TRPM3)是一种Ca2+通透性非选择性阳离子通道,可被热和化学激动剂激活,如内源性神经类固醇硫酸孕烯诺酮(PregS)和化合物CIM0216。TRPM3 在背根神经节(DRG)的外周感觉神经元中表达,它在小鼠有害热感觉中的作用已得到证实。TRPM3 也在包括大脑在内的许多其他组织中表达,但其在这些组织中的作用大多尚未被探索。最近的报告显示,TRPM3 的两种突变与发育和癫痫性脑病有关,这表明 TRPM3 在人脑中发挥着重要作用。随后的报告发现,这两种与疾病相关的突变增加了通道的基础活性,以及通道对热和化学激动剂激活的敏感性。本综述将结合其他 TRP 通道突变引起的人类疾病以及 TRPM3 的生物物理特性和生理功能来讨论这些突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A structural atlas of druggable sites on Nav channels. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology. Reducing agents facilitate membrane patch seal integrity and longevity. A phenylalanine at the extracellular side of Kir1.1 facilitates potassium permeation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1