首页 > 最新文献

Channels (Austin, Tex.)最新文献

英文 中文
A phenylalanine at the extracellular side of Kir1.1 facilitates potassium permeation. Kir1.1 细胞外侧的苯丙氨酸可促进钾渗透。
Pub Date : 2024-12-01 Epub Date: 2024-01-07 DOI: 10.1080/19336950.2023.2294661
Henry Sackin, Mikheil Nanazashvili

The Kir1.1 (ROMK) family of weak inward rectifiers controls K secretion in the renal CCT and K recycling in the renal TALH. A single point mutant of the inward rectifier, F127V-Kir1.1b was used to investigate the K transition between the selectivity filter and the outer mouth of the channel. We hypothesize that normally an aromatic Phe at the external entryway of Kir1.1b facilitates outward K secretion. We tested this by replacing F127-Kir1.1b with a small aliphatic Val. Results indicate that removal of the Phe at 127 suppresses outward currents that normally contribute to K secretion. Results with the F127V mutant could be explained by increased polyamine block and/or a decrease in the avidity of Kir1.1 for K ions near the outer mouth of the channel. The latter is supported by F127V-Kir1.1b having a lower affinity (Km = 33 mM) for K than wild-type Kir1.1b (Km = 7 mM) during external K elevation. Conversely, chelation of K with 18-Crown-6 ether reduced K conductance faster in F127V (half-time = 6s) than in wt-Kir1.1b (half-time = 120s), implying that F127V is less hospitable to external K. In other experiments, positive membrane potentials gated the F127V mutant channel closed at physiological levels of external Ca, possibly by electrostatically depleting K adjacent to the membrane, suggesting that the Phe residue is critical for outward K secretion at physiological Ca. We speculate that the avidity of wt-Kir1.1b for external K could result from a cation-Pi interaction between K and the aromatic F127.

Kir1.1 (ROMK)弱内向整流子家族控制着肾脏 CCT 中的 K 分泌和肾脏 TALH 中的 K 循环。我们利用内向整流子的单点突变体 F127V-Kir1.1b 来研究选择性过滤器和通道外口之间的 K 转换。我们假设,通常情况下,Kir1.1b 外部入口处的芳香族 Phe 会促进 K 向外分泌。我们用一个小的脂肪族缬氨酸取代 F127-Kir1.1b,对其进行了测试。结果表明,移除 127 处的 Phe 会抑制通常有助于 K 分泌的外向电流。F127V 突变体的结果可以用多胺阻滞增加和/或 Kir1.1 对通道外口附近 K 离子的渴求度降低来解释。在外部 K 升高时,F127V-Kir1.1b 对 K 的亲和力(Km = 33 mM)低于野生型 Kir1.1b(Km = 7 mM),这证明了后者。相反,用 18-Crown-6 乙醚螯合 K 时,F127V(半衰期 = 6s)比 wt-Kir1.1b (半衰期 = 120s)的 K 传导性降低得更快,这意味着 F127V 对外部 K 的亲和性更低。在其他实验中,正膜电位门控 F127V 突变体通道在生理水平的外部 Ca 时关闭,可能是通过静电耗尽膜附近的 K,这表明 Phe 残基对于生理 Ca 时向外分泌 K 至关重要。我们推测,wt-Kir1.1b 对外部 K 的渴求可能是 K 与芳香族 F127 之间的阳离子-π相互作用的结果。
{"title":"A phenylalanine at the extracellular side of Kir1.1 facilitates potassium permeation.","authors":"Henry Sackin, Mikheil Nanazashvili","doi":"10.1080/19336950.2023.2294661","DOIUrl":"10.1080/19336950.2023.2294661","url":null,"abstract":"<p><p>The Kir1.1 (ROMK) family of weak inward rectifiers controls K secretion in the renal CCT and K recycling in the renal TALH. A single point mutant of the inward rectifier, F127V-Kir1.1b was used to investigate the K transition between the selectivity filter and the outer mouth of the channel. We hypothesize that normally an aromatic <i>Phe</i> at the external entryway of Kir1.1b facilitates outward K secretion. We tested this by replacing F127-Kir1.1b with a small aliphatic <i>Val</i>. Results indicate that removal of the <i>Phe</i> at 127 suppresses outward currents that normally contribute to K secretion. Results with the F127V mutant could be explained by increased polyamine block and/or a decrease in the avidity of Kir1.1 for K ions near the outer mouth of the channel. The latter is supported by F127V-Kir1.1b having a lower affinity (K<sub>m</sub> = 33 mM) for K than wild-type Kir1.1b (K<sub>m</sub> = 7 mM) during external K elevation. Conversely, chelation of K with 18-Crown-6 ether reduced K conductance faster in F127V (half-time = 6s) than in wt-Kir1.1b (half-time = 120s), implying that F127V is less hospitable to external K. In other experiments, positive membrane potentials gated the F127V mutant channel closed at physiological levels of external Ca, possibly by electrostatically depleting K adjacent to the membrane, suggesting that the <i>Phe</i> residue is critical for outward K secretion at physiological Ca. We speculate that the avidity of wt-Kir1.1b for external K could result from a cation-Pi interaction between K and the aromatic F127.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139111385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A structural atlas of druggable sites on Nav channels. Nav通道上可用药部位的结构地图集。
Pub Date : 2024-12-01 Epub Date: 2023-11-30 DOI: 10.1080/19336950.2023.2287832
Zhangqiang Li, Qiurong Wu, Nieng Yan

Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.

电压门控钠(Nav)通道通过启动和传播动作电位来控制膜的兴奋性。与它们的生理意义一致,这些通道的功能障碍或突变与各种通道病有关。因此,Nav通道是各种临床和研究药物的主要靶点。此外,大量的天然毒素,包括小分子和多肽,都可以与Nav通道结合并调节其功能。低温电子显微镜(cryo-EM)的技术突破已经能够确定真核生物和最终人类Nav通道的高分辨率结构,无论是单独的还是与辅助亚基、毒素和药物的复合。这些研究不仅提高了我们对通道结构和工作机制的理解,而且为原型药物和毒素的结合和作用机制(MOA)的分子基础提供了前所未有的清晰度。在这篇综述中,我们将概述Nav通道结构药理学的最新进展,包括配体结合Nav通道的结构图谱。这些发现为未来的药物开发奠定了重要的基础。
{"title":"A structural atlas of druggable sites on Na<sub>v</sub> channels.","authors":"Zhangqiang Li, Qiurong Wu, Nieng Yan","doi":"10.1080/19336950.2023.2287832","DOIUrl":"10.1080/19336950.2023.2287832","url":null,"abstract":"<p><p>Voltage-gated sodium (Na<sub>v</sub>) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Na<sub>v</sub> channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Na<sub>v</sub> channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Na<sub>v</sub> channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Na<sub>v</sub> channels, encompassing the structural map for ligand binding on Na<sub>v</sub> channels. These findings have established a vital groundwork for future drug development.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology. 电压门控离子通道的新见解:肿瘤内科学的转化突破。
Pub Date : 2024-12-01 Epub Date: 2023-12-28 DOI: 10.1080/19336950.2023.2297605
Minas Sakellakis, Sung Mi Yoon, Jashan Reet, Athanasios Chalkias

Preclinical evidence suggests that voltage gradients can act as a kind of top-down master regulator during embryogenesis and orchestrate downstream molecular-genetic pathways during organ regeneration or repair. Moreover, electrical stimulation shifts response to injury toward regeneration instead of healing or scarring. Cancer and embryogenesis not only share common phenotypical features but also commonly upregulated molecular pathways. Voltage-gated ion channel activity is directly or indirectly linked to the pathogenesis of cancer hallmarks, while experimental and clinical studies suggest that their modulation, e.g., by anesthetic agents, may exert antitumor effects. A large recent clinical trial served as a proof-of-principle for the benefit of preoperative use of topical sodium channel blockade as a potential anticancer strategy against early human breast cancers. Regardless of whether ion channel aberrations are primary or secondary cancer drivers, understanding the functional consequences of these events may guide us toward the development of novel therapeutic approaches.

临床前证据表明,电压梯度可在胚胎发育过程中充当一种自上而下的主调节器,并在器官再生或修复过程中协调下游分子遗传途径。此外,电刺激可使损伤反应转向再生,而不是愈合或结疤。癌症和胚胎发生不仅具有共同的表型特征,而且具有共同的上调分子通路。电压门控离子通道活性与癌症特征的发病机制直接或间接相关,而实验和临床研究表明,通过麻醉剂等手段调节电压门控离子通道可能会产生抗肿瘤效果。最近的一项大型临床试验证明,术前局部使用钠通道阻滞剂作为一种潜在的抗癌策略,对人类早期乳腺癌有好处。无论离子通道畸变是原发性还是继发性癌症驱动因素,了解这些事件的功能性后果都可能指导我们开发新型治疗方法。
{"title":"Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology.","authors":"Minas Sakellakis, Sung Mi Yoon, Jashan Reet, Athanasios Chalkias","doi":"10.1080/19336950.2023.2297605","DOIUrl":"10.1080/19336950.2023.2297605","url":null,"abstract":"<p><p>Preclinical evidence suggests that voltage gradients can act as a kind of top-down master regulator during embryogenesis and orchestrate downstream molecular-genetic pathways during organ regeneration or repair. Moreover, electrical stimulation shifts response to injury toward regeneration instead of healing or scarring. Cancer and embryogenesis not only share common phenotypical features but also commonly upregulated molecular pathways. Voltage-gated ion channel activity is directly or indirectly linked to the pathogenesis of cancer hallmarks, while experimental and clinical studies suggest that their modulation, e.g., by anesthetic agents, may exert antitumor effects. A large recent clinical trial served as a proof-of-principle for the benefit of preoperative use of topical sodium channel blockade as a potential anticancer strategy against early human breast cancers. Regardless of whether ion channel aberrations are primary or secondary cancer drivers, understanding the functional consequences of these events may guide us toward the development of novel therapeutic approaches.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell size induced bias of current density in hypertrophic cardiomyocytes. 细胞大小诱导肥大心肌细胞的电流密度偏差
Pub Date : 2024-12-01 Epub Date: 2024-06-05 DOI: 10.1080/19336950.2024.2361416
Elena Lilliu, Benjamin Hackl, Eva Zabrodska, Stefanie Gewessler, Tobias Karge, Jessica Marksteiner, Jakob Sauer, Eva M Putz, Hannes Todt, Karlheinz Hilber, Xaver Koenig

Alterations in ion channel expression and function known as "electrical remodeling" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.

离子通道表达和功能的改变被称为 "电重塑",它有助于肥大的发展以及心律失常和心脏性猝死的出现。然而,在正常细胞和肥大细胞之间比较电流密度值(通常用于评估离子通道功能的电生理参数)可能存在缺陷,因为电流振幅并不随细胞大小而变化。此外,研究同等大小的细胞或在大电流无法进行适当的电压钳控制时放弃测量的常见方法可能会引入选择偏差,从而混淆直接比较。为了测试电流密度对细胞大小和形状的可能依赖性,我们采用了全细胞贴片钳记录朗根多夫分离心室心肌细胞和浦肯野(Purkinje)心肌细胞以及经主动脉收缩操作小鼠心肌细胞的电压门控钠离子和钙离子电流。在这里,我们描述了正常细胞和肥大细胞中电压门控钠离子和钙离子电流密度与细胞电容之间明显的反比关系。这种反比关系用指数函数很好地拟合,可能是由于生理适应与细胞大小不成正比,也可能是由于选择偏差。我们的研究强调,在比较不同大小心肌细胞(尤其是肥大细胞)的电流密度时,需要考虑细胞大小偏差。对于细胞大小不等或电流振幅与细胞大小不成正比的组别,仅根据平均电流密度进行传统比较可能是不够的。
{"title":"Cell size induced bias of current density in hypertrophic cardiomyocytes.","authors":"Elena Lilliu, Benjamin Hackl, Eva Zabrodska, Stefanie Gewessler, Tobias Karge, Jessica Marksteiner, Jakob Sauer, Eva M Putz, Hannes Todt, Karlheinz Hilber, Xaver Koenig","doi":"10.1080/19336950.2024.2361416","DOIUrl":"10.1080/19336950.2024.2361416","url":null,"abstract":"<p><p>Alterations in ion channel expression and function known as \"electrical remodeling\" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of four KCNMA1 channelopathy variants on BK channel current under CaV1.2 activation. 评估四种 KCNMA1 通道病变变体在 CaV1.2 激活下对 BK 通道电流的影响。
Pub Date : 2024-12-01 Epub Date: 2024-09-01 DOI: 10.1080/19336950.2024.2396346
Ria L Dinsdale, Andrea L Meredith

Variants in KCNMA1, encoding the voltage- and calcium-activated K+ (BK) channel, are associated with human neurological disease. The effects of gain-of-function (GOF) and loss-of-function (LOF) variants have been predominantly studied on BK channel currents evoked under steady-state voltage and Ca2+ conditions. However, in their physiological context, BK channels exist in partnership with voltage-gated Ca2+ channels and respond to dynamic changes in intracellular Ca2+ (Ca2+i). In this study, an L-type voltage-gated Ca2+ channel present in the brain, CaV1.2, was co-expressed with wild type and mutant BK channels containing GOF (D434G, N999S) and LOF (H444Q, D965V) patient-associated variants in HEK-293T cells. Whole-cell BK currents were recorded under CaV1.2 activation using buffering conditions that restrict Ca2+i to nano- or micro-domains. Both conditions permitted wild type BK current activation in response to CaV1.2 Ca2+ influx, but differences in behavior between wild type and mutant BK channels were reduced compared to prior studies in clamped Ca2+i. Only the N999S mutation produced an increase in BK current in both micro- and nano-domains using square voltage commands and was also detectable in BK current evoked by a neuronal action potential within a microdomain. These data corroborate the GOF effect of N999S on BK channel activity under dynamic voltage and Ca2+ stimuli, consistent with its pathogenicity in neurological disease. However, the patient-associated mutations D434G, H444Q, and D965V did not exhibit significant effects on BK current under CaV1.2-mediated Ca2+ influx, in contrast with prior steady-state protocols. These results demonstrate a differential potential for KCNMA1 variant pathogenicity compared under diverse voltage and Ca2+ conditions.

编码电压和钙激活 K+ (BK) 通道的 KCNMA1 变异与人类神经系统疾病有关。功能增益(GOF)和功能缺失(LOF)变异对稳态电压和 Ca2+ 条件下诱发的 BK 通道电流的影响已被广泛研究。然而,在生理背景下,BK 通道与电压门控 Ca2+ 通道共同存在,并对细胞内 Ca2+ (Ca2+i)的动态变化做出反应。本研究在 HEK-293T 细胞中共同表达了大脑中的 L 型电压门控 Ca2+ 通道 CaV1.2,以及野生型和含有 GOF(D434G、N999S)和 LOF(H444Q、D965V)患者相关变体的突变型 BK 通道。在 CaV1.2 激活的情况下,利用将 Ca2+i 限制在纳米或微域的缓冲条件记录全细胞 BK 电流。这两种条件都允许野生型 BK 电流激活以响应 CaV1.2 Ca2+ 流入,但野生型和突变型 BK 通道在行为上的差异与之前钳制 Ca2+i 的研究相比有所减少。只有 N999S 突变体在使用方形电压指令时能产生微域和纳米域 BK 电流的增加,而且还能在微域内神经元动作电位诱发的 BK 电流中检测到。这些数据证实了 N999S 在动态电压和 Ca2+ 刺激下对 BK 通道活性的 GOF 效应,这与它在神经系统疾病中的致病性是一致的。然而,与患者相关的突变 D434G、H444Q 和 D965V 在 CaV1.2 介导的 Ca2+ 流入下对 BK 电流没有表现出明显的影响,这与之前的稳态协议不同。这些结果表明,在不同的电压和 Ca2+ 条件下,KCNMA1 变异致病性的潜力不同。
{"title":"Evaluation of four <i>KCNMA1</i> channelopathy variants on BK channel current under Ca<sub>V</sub>1.2 activation.","authors":"Ria L Dinsdale, Andrea L Meredith","doi":"10.1080/19336950.2024.2396346","DOIUrl":"10.1080/19336950.2024.2396346","url":null,"abstract":"<p><p>Variants in <i>KCNMA1</i>, encoding the voltage- and calcium-activated K<sup>+</sup> (BK) channel, are associated with human neurological disease. The effects of gain-of-function (GOF) and loss-of-function (LOF) variants have been predominantly studied on BK channel currents evoked under steady-state voltage and Ca<sup>2+</sup> conditions. However, in their physiological context, BK channels exist in partnership with voltage-gated Ca<sup>2+</sup> channels and respond to dynamic changes in intracellular Ca<sup>2+</sup> (Ca<sup>2+</sup><sub>i</sub>). In this study, an L-type voltage-gated Ca<sup>2+</sup> channel present in the brain, Ca<sub>V</sub>1.2, was co-expressed with wild type and mutant BK channels containing GOF (D434G, N999S) and LOF (H444Q, D965V) patient-associated variants in HEK-293T cells. Whole-cell BK currents were recorded under Ca<sub>V</sub>1.2 activation using buffering conditions that restrict Ca<sup>2+</sup><sub>i</sub> to nano- or micro-domains. Both conditions permitted wild type BK current activation in response to Ca<sub>V</sub>1.2 Ca<sup>2+</sup> influx, but differences in behavior between wild type and mutant BK channels were reduced compared to prior studies in clamped Ca<sup>2+</sup><sub>i</sub>. Only the N999S mutation produced an increase in BK current in both micro- and nano-domains using square voltage commands and was also detectable in BK current evoked by a neuronal action potential within a microdomain. These data corroborate the GOF effect of N999S on BK channel activity under dynamic voltage and Ca<sup>2+</sup> stimuli, consistent with its pathogenicity in neurological disease. However, the patient-associated mutations D434G, H444Q, and D965V did not exhibit significant effects on BK current under Ca<sub>V</sub>1.2-mediated Ca<sup>2+</sup> influx, in contrast with prior steady-state protocols. These results demonstrate a differential potential for <i>KCNMA1</i> variant pathogenicity compared under diverse voltage and Ca<sup>2+</sup> conditions.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel benzoylurea derivative decreases TRPM7 channel function and inhibits cancer cells migration. 新型苯甲酰脲类衍生物可降低 TRPM7 通道功能并抑制癌细胞迁移
Pub Date : 2024-12-01 Epub Date: 2024-08-30 DOI: 10.1080/19336950.2024.2396339
Xiaoding Zhang, Rui Zong, Yu Han, Xiaoming Li, Shuangyu Liu, Yixue Cao, Nan Jiang, Pingping Chen, Haixia Gao

The transient receptor potential melastatin 7 channel (TRPM7) is a nonselective cation channel highly expressed in some human cancer tissues. TRPM7 is involved in the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cancer cells. Modulation of TRPM7 could be a promising therapeutic strategy for treating cancer; however, efficient and selective pharmacological TRPM7 modulators are lacking. In this study we investigated N- [4- (4, 6-dimethyl- 2-pyrimidinyloxy) - 3- methylphenyl] -N' - [2 -(dimethylamino)] benzoylurea (SUD), a newly synthesized benzoylurea derivative, for its effects on cancer cell migration and EMT and on functional expression of TRPM7. Our previous studies showed that SUD induces cell cycle arrest and apoptosis of MCF-7 and BGC-823 cells (human breast cancer and gastric cancer cell lines, respectively). Here, we show that SUD significantly decreased the migration of both types of cancer cells. Moreover, SUD decreased vimentin expression and increased E-cadherin expression in both cell types, indicating that EMT is also decreased by SUD. Importantly, SUD potentially reduced the TRPM7-like current in a concentration-dependent manner and decreased TRPM7 expression through the PI3K/Akt signaling pathway. Finally, molecular docking simulations were used to investigate potential SUD binding sites on TRPM7. In summary, our research demonstrated that SUD is an effective TRPM7 inhibitor and a potential agent to suppress the metastasis of breast and gastric cancer by inhibiting TRPM7 expression and function.

瞬时受体电位美司他丁 7 通道(TRPM7)是一种非选择性阳离子通道,在一些人类癌症组织中高度表达。TRPM7 参与了癌细胞的增殖、迁移、侵袭和上皮-间质转化(EMT)。调节 TRPM7 可能是治疗癌症的一种很有前景的治疗策略;然而,目前还缺乏高效且具有选择性的 TRPM7 药理调节剂。在本研究中,我们研究了一种新合成的苯甲酰脲衍生物 N- [4- (4, 6-dimethyl- 2-primyidinyloxy) - 3- methylphenyl] -N' - [2 -(dimethylamino)] benzoylurea(SUD)对癌细胞迁移和 EMT 以及 TRPM7 功能表达的影响。我们之前的研究表明,SUD 可诱导 MCF-7 和 BGC-823 细胞(分别为人类乳腺癌和胃癌细胞系)的细胞周期停滞和凋亡。在这里,我们发现 SUD 能明显减少这两种癌细胞的迁移。此外,SUD 还降低了这两种细胞中波形蛋白的表达,增加了 E-cadherin 的表达,表明 SUD 还降低了 EMT 的表达。重要的是,SUD 有可能以浓度依赖的方式降低 TRPM7 样电流,并通过 PI3K/Akt 信号通路降低 TRPM7 的表达。最后,我们利用分子对接模拟研究了 SUD 与 TRPM7 的潜在结合位点。总之,我们的研究表明,SUD是一种有效的TRPM7抑制剂,是一种通过抑制TRPM7的表达和功能来抑制乳腺癌和胃癌转移的潜在药物。
{"title":"Novel benzoylurea derivative decreases TRPM7 channel function and inhibits cancer cells migration.","authors":"Xiaoding Zhang, Rui Zong, Yu Han, Xiaoming Li, Shuangyu Liu, Yixue Cao, Nan Jiang, Pingping Chen, Haixia Gao","doi":"10.1080/19336950.2024.2396339","DOIUrl":"10.1080/19336950.2024.2396339","url":null,"abstract":"<p><p>The transient receptor potential melastatin 7 channel (TRPM7) is a nonselective cation channel highly expressed in some human cancer tissues. TRPM7 is involved in the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cancer cells. Modulation of TRPM7 could be a promising therapeutic strategy for treating cancer; however, efficient and selective pharmacological TRPM7 modulators are lacking. In this study we investigated N- [4- (4, 6-dimethyl- 2-pyrimidinyloxy) - 3- methylphenyl] -N' - [2 -(dimethylamino)] benzoylurea (SUD), a newly synthesized benzoylurea derivative, for its effects on cancer cell migration and EMT and on functional expression of TRPM7. Our previous studies showed that SUD induces cell cycle arrest and apoptosis of MCF-7 and BGC-823 cells (human breast cancer and gastric cancer cell lines, respectively). Here, we show that SUD significantly decreased the migration of both types of cancer cells. Moreover, SUD decreased vimentin expression and increased E-cadherin expression in both cell types, indicating that EMT is also decreased by SUD. Importantly, SUD potentially reduced the TRPM7-like current in a concentration-dependent manner and decreased TRPM7 expression through the PI3K/Akt signaling pathway. Finally, molecular docking simulations were used to investigate potential SUD binding sites on TRPM7. In summary, our research demonstrated that SUD is an effective TRPM7 inhibitor and a potential agent to suppress the metastasis of breast and gastric cancer by inhibiting TRPM7 expression and function.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the CaV1.2 distal carboxy terminus in the regulation of L-type current. CaV1.2 远端羧基末端在 L 型电流调节中的作用
Pub Date : 2024-12-01 Epub Date: 2024-05-01 DOI: 10.1080/19336950.2024.2338782
Felipe Arancibia, Daniela De Giorgis, Franco Medina, Tamara Hermosilla, Felipe Simon, Diego Varela

L-type calcium channels are essential for the excitation-contraction coupling in cardiac muscle. The CaV1.2 channel is the most predominant isoform in the ventricle which consists of a multi-subunit membrane complex that includes the CaV1.2 pore-forming subunit and auxiliary subunits like CaVα2δ and CaVβ2b. The CaV1.2 channel's C-terminus undergoes proteolytic cleavage, and the distal C-terminal domain (DCtermD) associates with the channel core through two domains known as proximal and distal C-terminal regulatory domain (PCRD and DCRD, respectively). The interaction between the DCtermD and the remaining C-terminus reduces the channel activity and modifies voltage- and calcium-dependent inactivation mechanisms, leading to an autoinhibitory effect. In this study, we investigate how the interaction between DCRD and PCRD affects the inactivation processes and CaV1.2 activity. We expressed a 14-amino acid peptide miming the DCRD-PCRD interaction sequence in both heterologous systems and cardiomyocytes. Our results show that overexpression of this small peptide can displace the DCtermD and replicate the effects of the entire DCtermD on voltage-dependent inactivation and channel inhibition. However, the effect on calcium-dependent inactivation requires the full DCtermD and is prevented by overexpression of calmodulin. In conclusion, our results suggest that the interaction between DCRD and PCRD is sufficient to bring about the current inhibition and alter the voltage-dependent inactivation, possibly in an allosteric manner. Additionally, our data suggest that the DCtermD competitively modifies the calcium-dependent mechanism. The identified peptide sequence provides a valuable tool for further dissecting the molecular mechanisms that regulate L-type calcium channels' basal activity in cardiomyocytes.

L 型钙通道对心肌的兴奋-收缩耦合至关重要。CaV1.2 通道是心室中最主要的异构体,它由多亚基膜复合物组成,包括 CaV1.2 孔形成亚基以及 CaVα2δ 和 CaVβ2b 等辅助亚基。CaV1.2 通道的 C 端会发生蛋白水解,远端 C 端结构域(DCtermD)通过两个结构域(分别称为近端和远端 C 端调节结构域(PCRD 和 DCRD))与通道核心结合。DCtermD 与剩余 C 端之间的相互作用降低了通道活性,并改变了电压和钙依赖性失活机制,从而导致自抑制作用。在本研究中,我们研究了 DCRD 和 PCRD 之间的相互作用如何影响失活过程和 CaV1.2 的活性。我们在异源系统和心肌细胞中表达了模拟 DCRD-PCRD 相互作用序列的 14 氨基酸肽。我们的结果表明,过表达这种小肽可以取代 DCtermD,并复制整个 DCtermD 对电压依赖性失活和通道抑制的影响。然而,对钙依赖性失活的影响需要完整的 DCtermD,并且会被过表达钙调蛋白所阻止。总之,我们的研究结果表明,DCRD 和 PCRD 之间的相互作用足以导致电流抑制和改变电压依赖性失活,这可能是一种异位方式。此外,我们的数据还表明,DCtermD 竞争性地改变了钙依赖机制。所鉴定的多肽序列为进一步剖析调控心肌细胞中 L 型钙通道基础活性的分子机制提供了宝贵的工具。
{"title":"Role of the Ca<sub>V</sub>1.2 distal carboxy terminus in the regulation of L-type current.","authors":"Felipe Arancibia, Daniela De Giorgis, Franco Medina, Tamara Hermosilla, Felipe Simon, Diego Varela","doi":"10.1080/19336950.2024.2338782","DOIUrl":"https://doi.org/10.1080/19336950.2024.2338782","url":null,"abstract":"<p><p>L-type calcium channels are essential for the excitation-contraction coupling in cardiac muscle. The Ca<sub>V</sub>1.2 channel is the most predominant isoform in the ventricle which consists of a multi-subunit membrane complex that includes the Ca<sub>V</sub>1.2 pore-forming subunit and auxiliary subunits like Ca<sub>V</sub>α<sub>2</sub>δ and Ca<sub>V</sub>β<sub>2b</sub>. The Ca<sub>V</sub>1.2 channel's C-terminus undergoes proteolytic cleavage, and the distal C-terminal domain (DC<sub>term</sub>D) associates with the channel core through two domains known as proximal and distal C-terminal regulatory domain (PCRD and DCRD, respectively). The interaction between the DC<sub>term</sub>D and the remaining C-terminus reduces the channel activity and modifies voltage- and calcium-dependent inactivation mechanisms, leading to an autoinhibitory effect. In this study, we investigate how the interaction between DCRD and PCRD affects the inactivation processes and Ca<sub>V</sub>1.2 activity. We expressed a 14-amino acid peptide miming the DCRD-PCRD interaction sequence in both heterologous systems and cardiomyocytes. Our results show that overexpression of this small peptide can displace the DC<sub>term</sub>D and replicate the effects of the entire DC<sub>term</sub>D on voltage-dependent inactivation and channel inhibition. However, the effect on calcium-dependent inactivation requires the full DC<sub>term</sub>D and is prevented by overexpression of calmodulin. In conclusion, our results suggest that the interaction between DCRD and PCRD is sufficient to bring about the current inhibition and alter the voltage-dependent inactivation, possibly in an allosteric manner. Additionally, our data suggest that the DC<sub>term</sub>D competitively modifies the calcium-dependent mechanism. The identified peptide sequence provides a valuable tool for further dissecting the molecular mechanisms that regulate L-type calcium channels' basal activity in cardiomyocytes.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11067984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The activation thresholds and inactivation kinetics of poking-evoked PIEZO1 and PIEZO2 currents are sensitive to subtle variations in mechanical stimulation parameters. 戳诱发的 PIEZO1 和 PIEZO2 电流的激活阈值和失活动力学对机械刺激参数的微妙变化非常敏感。
Pub Date : 2024-12-01 Epub Date: 2024-05-16 DOI: 10.1080/19336950.2024.2355123
Nadja Zeitzschel, Stefan G Lechner

PIEZO1 and PIEZO2 are mechanically activated ion channels that confer mechanosensitivity to various cell types. PIEZO channels are commonly examined using the so-called poking technique, where currents are recorded in the whole-cell configuration of the patch-clamp technique, while the cell surface is mechanically stimulated with a small fire-polished patch pipette. Currently, there is no gold standard for mechanical stimulation, and therefore, stimulation protocols differ significantly between laboratories with regard to stimulation velocity, angle, and size of the stimulation probe. Here, we systematically examined the impact of variations in these three stimulation parameters on the outcomes of patch-clamp recordings of PIEZO1 and PIEZO2. We show that the inactivation kinetics of PIEZO1 and, to a lesser extent, of PIEZO2 change with the angle at which the probe that is used for mechanical stimulation is positioned and, even more prominently, with the size of its tip. Moreover, we found that the mechanical activation threshold of PIEZO2, but not PIEZO1, decreased with increasing stimulation speeds. Thus, our data show that two key outcome parameters of PIEZO-related patch-clamp studies are significantly affected by common variations in the mechanical stimulation protocols, which calls for caution when comparing data from different laboratories and highlights the need to establish a gold standard for mechanical stimulation to improve comparability and reproducibility of data obtained with the poking technique.

PIEZO1 和 PIEZO2 是机械激活的离子通道,可赋予各种细胞机械敏感性。对 PIEZO 通道的研究通常采用所谓的戳穿技术,即用贴片钳技术的全细胞配置记录电流,同时用一个小的火抛光贴片移液管对细胞表面进行机械刺激。目前,还没有机械刺激的黄金标准,因此,不同实验室的刺激方案在刺激速度、角度和刺激探针的大小方面存在很大差异。在这里,我们系统地研究了这三个刺激参数的变化对 PIEZO1 和 PIEZO2 膜片钳记录结果的影响。我们发现,PIEZO1 的失活动力学会随着机械刺激探针所处角度的变化而变化,其次是 PIEZO2 的失活动力学会随着探针尖端大小的变化而变化。此外,我们还发现,随着刺激速度的增加,PIEZO2 的机械激活阈值会降低,而 PIEZO1 则不会。因此,我们的数据表明,与 PIEZO 相关的膜片钳研究的两个关键结果参数会受到机械刺激方案常见差异的显著影响,这就要求在比较不同实验室的数据时要谨慎,并强调有必要建立机械刺激的黄金标准,以提高用戳穿技术获得的数据的可比性和可重复性。
{"title":"The activation thresholds and inactivation kinetics of poking-evoked PIEZO1 and PIEZO2 currents are sensitive to subtle variations in mechanical stimulation parameters.","authors":"Nadja Zeitzschel, Stefan G Lechner","doi":"10.1080/19336950.2024.2355123","DOIUrl":"https://doi.org/10.1080/19336950.2024.2355123","url":null,"abstract":"<p><p>PIEZO1 and PIEZO2 are mechanically activated ion channels that confer mechanosensitivity to various cell types. PIEZO channels are commonly examined using the so-called poking technique, where currents are recorded in the whole-cell configuration of the patch-clamp technique, while the cell surface is mechanically stimulated with a small fire-polished patch pipette. Currently, there is no gold standard for mechanical stimulation, and therefore, stimulation protocols differ significantly between laboratories with regard to stimulation velocity, angle, and size of the stimulation probe. Here, we systematically examined the impact of variations in these three stimulation parameters on the outcomes of patch-clamp recordings of PIEZO1 and PIEZO2. We show that the inactivation kinetics of PIEZO1 and, to a lesser extent, of PIEZO2 change with the angle at which the probe that is used for mechanical stimulation is positioned and, even more prominently, with the size of its tip. Moreover, we found that the mechanical activation threshold of PIEZO2, but not PIEZO1, decreased with increasing stimulation speeds. Thus, our data show that two key outcome parameters of PIEZO-related patch-clamp studies are significantly affected by common variations in the mechanical stimulation protocols, which calls for caution when comparing data from different laboratories and highlights the need to establish a gold standard for mechanical stimulation to improve comparability and reproducibility of data obtained with the poking technique.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac L-type calcium channel regulation by Leucine-Rich Repeat-Containing Protein 10. 含亮氨酸丰富重复蛋白 10 对心脏 L 型钙通道的调控。
Pub Date : 2024-12-01 Epub Date: 2024-05-19 DOI: 10.1080/19336950.2024.2355121
Natthaphat Siri-Angkul, Timothy J Kamp

L-type calcium channels (LTCCs), the major portal for Ca2+ entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca2+ current (ICa,L) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in ICa,L density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a ICa,L potentiator to a ICa,L suppressor, thus illustrating the wide dynamic range of LRRC10-mediated ICa,L regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.

L 型钙通道(LTCC)是 Ca2+ 进入心肌细胞的主要通道,对兴奋-收缩耦合至关重要,因此在调节整体心脏功能方面发挥着核心作用。LTCC 的功能由多种信号通路和附属蛋白进行微调。富亮氨酸重复序列蛋白 10(LRRC10)是一种研究较少的心肌细胞特异性蛋白,最近被发现是 LTCC 的调节因子。LRRC10 对 LTCC 的功能有显著影响,在异源表达系统中,它通过改变通道的门控而不改变其表面膜的表达,使 L 型 Ca2+ 电流(ICa,L)的振幅增加了一倍多。小鼠和斑马鱼心脏中 LRRC10 表达的基因消减会导致 ICa,L 密度显著降低,并导致小鼠出现缓慢进行性扩张型心肌病。在扩张型心肌病和原因不明的夜间心脏猝死综合征中发现了 LRRC10 的罕见序列变异,但这些变异尚未与疾病明确相关。然而,DCM 相关变体 I195T 将 LRRC10 从 ICa,L 的增效剂转变为 ICa,L 的抑制剂,从而说明了 LRRC10 介导的 ICa,L 调节具有广泛的动态范围。本综述重点介绍 LRRC10 调节 LTCC 的现代知识,并讨论未来研究的潜在方向。
{"title":"Cardiac L-type calcium channel regulation by Leucine-Rich Repeat-Containing Protein 10.","authors":"Natthaphat Siri-Angkul, Timothy J Kamp","doi":"10.1080/19336950.2024.2355121","DOIUrl":"10.1080/19336950.2024.2355121","url":null,"abstract":"<p><p>L-type calcium channels (LTCCs), the major portal for Ca<sup>2+</sup> entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca<sup>2+</sup> current (I<sub>Ca,L</sub>) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in I<sub>Ca,L</sub> density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a I<sub>Ca,L</sub> potentiator to a I<sub>Ca,L</sub> suppressor, thus illustrating the wide dynamic range of LRRC10-mediated I<sub>Ca,L</sub> regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing agents facilitate membrane patch seal integrity and longevity. 还原剂可提高膜片密封的完整性和使用寿命。
Pub Date : 2024-12-01 Epub Date: 2023-12-28 DOI: 10.1080/19336950.2023.2297621
Damayantee Das, Anson Wong, Timothy N Friedman, Bradley J Kerr, Harley T Kurata, Shawn M Lamothe

The patch clamp method is a widely applied electrophysiological technique used to understand ion channel activity and cellular excitation. The formation of a high resistance giga-ohm seal is required to obtain high-quality recordings but can be challenging due to variables including operator experience and cell preparation. Therefore, the identification of methods to promote the formation and longevity of giga-ohm seals may be beneficial. In this report, we describe our observation that the application of reducing agents (DTT and TCEP) to the external bath solution during whole-cell patch clamp recordings of heterologous cells (HEK and LM) and cultured primary cells (DRG neurons) enhanced the success of giga-ohm seal formation. Reducing agents also maintained the integrity of the seal for longer periods of time at strong hyperpolarizing voltages, whereas an oxidizing agent (H2O2) appeared to have the opposite effect. In summary, we report a useful tool to improve the quality of patch clamp recordings that may be helpful in certain experimental contexts.

膜片钳法是一种广泛应用的电生理技术,用于了解离子通道活动和细胞兴奋。要获得高质量的记录,需要形成高电阻千欧密封,但由于操作者的经验和细胞制备等变量,形成千欧密封可能具有挑战性。因此,找出促进千欧密封的形成和延长其寿命的方法可能是有益的。在本报告中,我们描述了对异源细胞(HEK 和 LM)和培养的原代细胞(DRG 神经元)进行全细胞膜片钳记录时,在外部浴液中加入还原剂(DTT 和 TCEP)可提高千欧密封形成的成功率的观察结果。在强超极化电压下,还原剂还能在更长的时间内保持密封的完整性,而氧化剂(H2O2)似乎有相反的效果。总之,我们报告了一种提高膜片钳记录质量的有用工具,在某些实验环境中可能会有所帮助。
{"title":"Reducing agents facilitate membrane patch seal integrity and longevity.","authors":"Damayantee Das, Anson Wong, Timothy N Friedman, Bradley J Kerr, Harley T Kurata, Shawn M Lamothe","doi":"10.1080/19336950.2023.2297621","DOIUrl":"10.1080/19336950.2023.2297621","url":null,"abstract":"<p><p>The patch clamp method is a widely applied electrophysiological technique used to understand ion channel activity and cellular excitation. The formation of a high resistance giga-ohm seal is required to obtain high-quality recordings but can be challenging due to variables including operator experience and cell preparation. Therefore, the identification of methods to promote the formation and longevity of giga-ohm seals may be beneficial. In this report, we describe our observation that the application of reducing agents (DTT and TCEP) to the external bath solution during whole-cell patch clamp recordings of heterologous cells (HEK and LM) and cultured primary cells (DRG neurons) enhanced the success of giga-ohm seal formation. Reducing agents also maintained the integrity of the seal for longer periods of time at strong hyperpolarizing voltages, whereas an oxidizing agent (H<sub>2</sub>O<sub>2</sub>) appeared to have the opposite effect. In summary, we report a useful tool to improve the quality of patch clamp recordings that may be helpful in certain experimental contexts.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Channels (Austin, Tex.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1