Effects of chronic NH4Cl dosage and swimming exercise on bone metabolic turnover in rats.

Chang-Sun Kim, Dong-Ho Park
{"title":"Effects of chronic NH4Cl dosage and swimming exercise on bone metabolic turnover in rats.","authors":"Chang-Sun Kim,&nbsp;Dong-Ho Park","doi":"10.2114/jpa.24.595","DOIUrl":null,"url":null,"abstract":"<p><p>To determine the effects of ammonium chloride (NH4Cl) dosage and swimming exercise training during 4 weeks on bone metabolic turnover in rats, seven-week-old female 24 Wister-Kyoto (WKY) rats were investigated by bone status including bone mineral density (BMD) and biomechanical markers from blood and urine. Twenty-four rats (initial weight: 191.2+/-7.6 g) were randomly divided into four groups: baseline (8 weeks old) control group (n=6, BC), 4-week control group (n=6, Con), 4-week swimming exercise loading group (n=6, Swim) and 4-week chronic NH4Cl dosage group (n=6, Acid). All rats were fed an AIN93M diet (Ca: 0.5%, P: 0.3%), and both Con and Swim groups were pair-fed by feeding volume of the NH4Cl dosage group. The acid group only received 0.25 M NH4Cl distilled water ad libitum. At the end of the experimental period, rats were sacrificed with blood drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the Swim group, 24-hour urinary deoxypiridinoline (Dpd) excretion, reflecting bone resorption, was significantly increased (p<0.05) with a tendency towards decrease of BMD (N.S.), and body weight and abdominal fat weight were decreased in approximately 7% (p<0.05) and 58% (p<0.001), as compared with age matched Con rats. In the Acid group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased approximately 2.1-fold (p<0.05) and 2.0-fold (p<0.01), respectively, with increase of kidney weight as much as in the Con groups. Serum Ca and P concentration, as well as urinary Dpd excretion were, however, not significantly changed. These results suggest that blood Ca and P concentrations in the chronic acidosis condition during the 4-weeks might be maintained by hypercalciuria and hyperphosphaturia with kidney disorder, and swimming exercise training leads to decrease in BMD with stimulation of bone resorption and reduction of body fat.</p>","PeriodicalId":80293,"journal":{"name":"Journal of physiological anthropology and applied human science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2114/jpa.24.595","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiological anthropology and applied human science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2114/jpa.24.595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

To determine the effects of ammonium chloride (NH4Cl) dosage and swimming exercise training during 4 weeks on bone metabolic turnover in rats, seven-week-old female 24 Wister-Kyoto (WKY) rats were investigated by bone status including bone mineral density (BMD) and biomechanical markers from blood and urine. Twenty-four rats (initial weight: 191.2+/-7.6 g) were randomly divided into four groups: baseline (8 weeks old) control group (n=6, BC), 4-week control group (n=6, Con), 4-week swimming exercise loading group (n=6, Swim) and 4-week chronic NH4Cl dosage group (n=6, Acid). All rats were fed an AIN93M diet (Ca: 0.5%, P: 0.3%), and both Con and Swim groups were pair-fed by feeding volume of the NH4Cl dosage group. The acid group only received 0.25 M NH4Cl distilled water ad libitum. At the end of the experimental period, rats were sacrificed with blood drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the Swim group, 24-hour urinary deoxypiridinoline (Dpd) excretion, reflecting bone resorption, was significantly increased (p<0.05) with a tendency towards decrease of BMD (N.S.), and body weight and abdominal fat weight were decreased in approximately 7% (p<0.05) and 58% (p<0.001), as compared with age matched Con rats. In the Acid group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased approximately 2.1-fold (p<0.05) and 2.0-fold (p<0.01), respectively, with increase of kidney weight as much as in the Con groups. Serum Ca and P concentration, as well as urinary Dpd excretion were, however, not significantly changed. These results suggest that blood Ca and P concentrations in the chronic acidosis condition during the 4-weeks might be maintained by hypercalciuria and hyperphosphaturia with kidney disorder, and swimming exercise training leads to decrease in BMD with stimulation of bone resorption and reduction of body fat.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢性NH4Cl剂量和游泳运动对大鼠骨代谢转换的影响。
为了确定氯化铵(NH4Cl)剂量和4周游泳运动训练对大鼠骨代谢转换的影响,研究了7周龄雌性24只Wister-Kyoto (WKY)大鼠的骨骼状况,包括骨密度(BMD)和血液和尿液的生物力学指标。24只初始体重191.2+/-7.6 g的大鼠随机分为4组:基线(8周龄)对照组(n=6, BC)、4周对照组(n=6, Con)、4周游泳运动负荷组(n=6, Swim)和4周慢性NH4Cl给药组(n=6, Acid)。各组大鼠分别饲喂Ca: 0.5%, P: 0.3%的AIN93M日粮,Con组和Swim组按NH4Cl剂量组的饲喂量配对饲喂。酸组只接受0.25 M NH4Cl蒸馏水。实验结束时,取大鼠血处死,取股骨和胫骨,用双能x线吸收仪(DEXA)测定骨密度(BMD)。在Swim组,24小时尿脱氧吡啶啉(Dpd)排泄,反映骨吸收,显著增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma leptin levels of elite endurance runners after heavy endurance training. Relationships of anthropometrical parameters and body composition with bone mineral content or density in young women with different levels of physical activity. The practice effect and its difference of the pursuit rotor test with the dominant and non-dominant hands. Effects of chronic NH4Cl dosage and swimming exercise on bone metabolic turnover in rats. Specific physiological responses in women with severe primary dysmenorrhea during the menstrual cycle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1